Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Biol ; 61(1): 362-371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36740871

RESUMO

CONTEXT: Kazinol B (KB), an isoprenylated flavan derived from Broussonetia kazinoki Sieb. (Moraceae) root, has long been used in folk medicine. OBJECTIVE: This study examines the protective effects of KB and its underlying mechanisms in hypoxia and reoxygenation (H/R)-induced cardiac injury in H9c2 rat cardiac myoblasts. MATERIALS AND METHODS: H9c2 cells were incubated with various concentrations of KB (0, 0.3, 1, 3, 10 and 30 µM) for 2 h and then subjected to H/R insults. The protective effects of KB and its underlying mechanisms were explored. RESULTS: KB significantly elevated cell viability (1 µM, 1.21-fold; 3 µM, 1.36-fold, and 10 µM, 1.47-fold) and suppressed LDH release (1 µM, 0.77-fold; 3 µM, 0.68-fold, and 10 µM, 0.59-fold) in H/R-induced H9c2 cells. Further, 10 µM KB blocked apoptotic cascades, as shown by the Annexin-V/PI (0.41-fold), DNA fragmentation (0.51-fold), caspase-3 (0.52-fold), PARP activation (0.27-fold) and Bax/Bcl-2 expression (0.28-fold) assays. KB (10 µM) downregulated reactive oxygen species production (0.51-fold) and lipid peroxidation (0.48-fold); it upregulated the activities of GSH-Px (2.08-fold) and SOD (1.72-fold). KB (10 µM) induced Nrf2 nuclear accumulation (1.94-fold) and increased ARE promoter activity (2.15-fold), HO-1 expression (3.07-fold), AKT (3.07-fold) and AMPK (3.07-fold) phosphorylation. Nrf2 knockdown via using Nrf2 siRNA abrogated KB-mediated protective effects against H/R insults. Moreover, pharmacological inhibitors of AKT and AMPK also abrogated KB-induced Nrf2 activation and its protective function. DISCUSSION AND CONCLUSIONS: KB prevented H/R-induced cardiomyocyte injury via modulating the AKT and AMPK-mediated Nrf2 induction. KB might be a promising drug candidate for managing ischemic cardiac disorders.


Assuntos
Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Apoptose , Estresse Oxidativo
2.
Neurotox Res ; 39(4): 1323-1337, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33999357

RESUMO

The present study aimed to evaluate the neuroprotective effects and underlying mechanisms of pinocembrin-7-methylether (PME), a natural bioflavonoid, in 6-hydroxydopamine (6-OHDA)-induced models of Parkinson's disease in vivo and in vitro. First, we found that PME decreased apoptosis in 6-OHDA-intoxicated SH-SY5Y cells. PME also blocked several 6-OHDA-induced mitochondrial apoptotic cascades, including loss of mitochondrial membrane potential, caspase 3 and PARP activation, and a decrease in the Bcl-2/Bax ratio. Also, PME suppressed 6-OHDA-induced oxidative stress while increasing antioxidant enzymatic activity. Further investigations indicated that PME significantly enhanced nuclear accumulation of Nrf2, improved ARE promoter activity, and upregulated HO-1 and NQO1 expression levels. In addition, siRNA-mediated Nrf2 knockdown abolished PME-induced anti-oxidative and anti-apoptotic effects. Interestingly, we found that PME promoted phosphorylation of AKT and ERK, whereas pharmacological inhibition of AKT or ERK pathways diminished PME-induced Nrf2 activation and protective actions. Moreover, PME attenuated 6-OHDA-induced loss of dopaminergic neurons and ameliorated locomotor deficiency in zebrafish, supporting the neuroprotective actions of PME in vivo. In summary, we found that PME conferred neuroprotection against 6-OHDA-induced neurotoxicity in PD models in vivo and in vitro. Taken together, our findings suggest that activation of Nrf2/ARE/HO-1 signaling cascades contributes to PME-induced anti-oxidative and neuroprotective actions, which are at least partially mediated by AKT and ERK pathways.


Assuntos
Flavanonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/biossíntese , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Animais , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Flavanonas/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Peixe-Zebra
3.
Chem Commun (Camb) ; 55(75): 11191-11194, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31465038

RESUMO

Square-planar cyclometalated platinum(ii) complexes have been found to serve as turn-on phosphorescent probes selectively for biological halogen ions. This is based on the halogen ion induced self-assembly of Pt(ii) compounds in aqueous media, resulting in intermolecular Pt-Pt interaction associated emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA