Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2116507119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486692

RESUMO

The noradrenergic locus coeruleus (LC) is a controller of brain and behavioral states. Activating LC neurons en masse by electrical or optogenetic stimulation promotes a stereotypical "activated" cortical state of high-frequency oscillations. However, it has been recently reported that spontaneous activity of LC cell pairs has sparse yet structured time-averaged cross-correlations, which is unlike the highly synchronous neuronal activity evoked by stimulation. Therefore, LC population activity could consist of distinct multicell ensembles each with unique temporal evolution of activity. We used nonnegative matrix factorization (NMF) to analyze large populations of simultaneously recorded LC single units in the rat LC. NMF identified ensembles of spontaneously coactive LC neurons and their activation time courses. Since LC neurons selectively project to specific forebrain regions, we hypothesized that distinct ensembles activate during different cortical states. To test this hypothesis, we calculated band-limited power and spectrograms of local field potentials in cortical area 24a aligned to spontaneous activations of distinct LC ensembles. A diversity of state modulations occurred around activation of different LC ensembles, including a typical activated state with increased high-frequency power as well as other states including decreased high-frequency power. Thus­in contrast to the stereotypical activated brain state evoked by en masse LC stimulation­spontaneous activation of distinct LC ensembles is associated with a multitude of cortical states.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Neurônios Adrenérgicos/fisiologia , Nível de Alerta/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina , Optogenética
2.
Eur J Neurosci ; 60(1): 3659-3676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872397

RESUMO

The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.


Assuntos
Potenciais de Ação , Neurônios Adrenérgicos , Locus Cerúleo , Locus Cerúleo/fisiologia , Locus Cerúleo/citologia , Animais , Camundongos , Masculino , Potenciais de Ação/fisiologia , Neurônios Adrenérgicos/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Mol Psychiatry ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414924

RESUMO

The brain's ability to associate threats with external stimuli is vital to execute essential behaviours including avoidance. Disruption of this process contributes instead to the emergence of pathological traits which are common in addiction and depression. However, the mechanisms and neural dynamics at the single-cell resolution underlying the encoding of associative learning remain elusive. Here, employing a Pavlovian discrimination task in mice we investigate how neuronal populations in the lateral habenula (LHb), a subcortical nucleus whose excitation underlies negative affect, encode the association between conditioned stimuli and a punishment (unconditioned stimulus). Large population single-unit recordings in the LHb reveal both excitatory and inhibitory responses to aversive stimuli. Additionally, local optical inhibition prevents the formation of cue discrimination during associative learning, demonstrating a critical role of LHb activity in this process. Accordingly, longitudinal in vivo two-photon imaging tracking LHb calcium neuronal dynamics during conditioning reveals an upward or downward shift of individual neurons' CS-evoked responses. While recordings in acute slices indicate strengthening of synaptic excitation after conditioning, support vector machine algorithms suggest that postsynaptic dynamics to punishment-predictive cues represent behavioral cue discrimination. To examine the presynaptic signaling in LHb participating in learning we monitored neurotransmitter dynamics with genetically-encoded indicators in behaving mice. While glutamate, GABA, and serotonin release in LHb remain stable across associative learning, we observe enhanced acetylcholine signaling developing throughout conditioning. In summary, converging presynaptic and postsynaptic mechanisms in the LHb underlie the transformation of neutral cues in valued signals supporting cue discrimination during learning.

4.
Elife ; 112022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080491

RESUMO

Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing 'ground-truth' validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons - pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure-function analysis of single neurons recorded during natural, unrestrained behavior.


Assuntos
Região CA1 Hipocampal/fisiologia , Hipocampo/metabolismo , Movimento/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/química , Calbindinas/genética , Channelrhodopsins/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética/métodos , Células Piramidais/química
5.
Front Synaptic Neurosci ; 13: 643138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867967

RESUMO

Projections from the lateral habenula (LHb) control ventral tegmental area (VTA) neuronal populations' activity and both nuclei shape the pathological behaviors emerging during cocaine withdrawal. However, it is unknown whether cocaine withdrawal modulates LHb neurotransmission onto subsets of VTA neurons that are part of distinct neuronal circuits. Here we show that, in mice, cocaine withdrawal, drives discrete and opposing synaptic adaptations at LHb inputs onto VTA neurons defined by their output synaptic connectivity. LHb axons innervate the medial aspect of VTA, release glutamate and synapse on to dopamine and non-dopamine neuronal populations. VTA neurons receiving LHb inputs project their axons to medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and lateral hypothalamus (LH). While cocaine withdrawal increases glutamate release from LHb onto VTA-mPFC projectors, it reduces presynaptic release onto VTA-NAc projectors, leaving LHb synapses onto VTA-to-LH unaffected. Altogether, cocaine withdrawal promotes distinct adaptations at identified LHb-to-VTA circuits, which provide a framework for understanding the circuit basis of the negative states emerging during abstinence of drug intake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA