Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phys Chem Chem Phys ; 26(30): 20470-20482, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39027937

RESUMO

Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.

2.
Angew Chem Int Ed Engl ; 63(24): e202401579, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609328

RESUMO

We disclose herein a novel photoredox and cobalt co-catalyzed ring-opening/acceptorless dehydrogenative functionalization of mono-donor cyclopropanes. This sustainable and atom-economic approach allows the rapid assembly of a wide range of allylic N,O-acyl-acetal derivatives. The starting materials are readily available and the reaction features mild conditions, broad substrate scope, and excellent functional group compatibility. The optimized conditions accommodate assorted cycloalkylamides and primary, secondary, and tertiary alcohols, with applications in late-stage functionalization of pharmaceutically relevant compounds, stimulating further utility in medicinal chemistry. Moreover, selective nucleophilic substitutions with various carbon nucleophiles were achieved in a one-pot fashion, offering a reliable avenue to access some cyclic and acyclic derivatives.

3.
Angew Chem Int Ed Engl ; 63(26): e202404825, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647332

RESUMO

Aqueous Zn-ion batteries (ZIBs) are promising next-generation energy storage devices, yet suffer from the issues of hydrogen evolution reaction (HER) and intricate side reactions on the Zn anode surface. The hydrogen (H)-bond networks play a critical role in interfacial proton transport that may closely relate to HER but are rarely investigated. Herein, we report a self-assembled monolayer (SAM) strategy which is constructed by anchoring ionic liquid cations on Ti3C2Tx substrate for HER-free Zn anode. Molecule dynamics simulations reveal that the rationally designed SAM with a high coordination number of water molecules (25-27, 4-6 for Zn2+) largely reduces the interfacial densities of H2O molecules, therefore breaking the connectivity of H-bond networks and blocking proton transport on the interface, by which the HER is suppressed. Then, a series of in situ characterizations demonstrate that negligible amounts of H2 gas are collected from the Zn@SAM-MXene anode. Consequently, the symmetric cell enables a long-cycling life of 3000 h at 1 mA cm-2 and 1000 h at 5 mA cm-2. More significantly, the stable Zn@SAM-MXene films are successfully used for coin full cells showing high-capacity retention of over 94 % after 1000 cycles and large-area (10×5 cm2) pouch cells with desired performance.

4.
Angew Chem Int Ed Engl ; 62(35): e202309024, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37431599

RESUMO

The constructing of artificial channels with gating functions is an important undertaking for gaining insight into biological process and achieving efficient bionic functions. Typically, controllable transport within such channels relies on either electrostatic or specific interactions between the transporting species and the channel. However, for molecules with weak interactions with the channel, achieving precise gating of the transport remains a significant challenge. In this regard, this study proposes a voltage gating membrane of two-dimensional channels that selectively transport of neutral molecules glucose with a dimension of 0.60 nm. The permeation of glucose is switched on/off by electrochemically manipulating the water dynamics in the nanochannel. Voltage driven-intercalation of ion into the two-dimensional channel causes water to stratify and move closer to the channel walls, thereby resulting in the channel center being emptier for glucose diffusion. Due to the sub-nanometer size dimension of the channel, selective permeation of glucose over sucrose is also achieved in this approach.

5.
Angew Chem Int Ed Engl ; 62(40): e202309918, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37583031

RESUMO

Protein channels on the biofilm conditionally manipulate ion transport via regulating the distribution of charge residues, making analogous processes on artificial membranes a hot spot and challenge. Here, we employ metal-organic frameworks (MOFs) membrane with charge-adjustable subnano-channel to selectively govern ion transport. Various valent ions are binded with crown ethers embedded in the MOF cavity, which act as charged guest to regulate the channels' charge state from the negativity to positivity. Compared with the negatively charged channel, the positive counterpart obviously enhances Li+ /Mg2+ selectivity, which benefit from the reinforcement of the electrostatic repulsion between ions and the channel. Meanwhile, theoretical calculations reveal that Mg2+ transport through the more positively charged channel needed to overcome higher entrance energy barrier than that of Li+ . This work provides a subtle strategy for ion-selective transport upon regulating the charge state of insulating membrane, which paves the way for the application like seawater desalination and lithium extraction from salt lakes.

6.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557844

RESUMO

The oxidation/weathering of molybdenite (MoS2) is too slow to be monitored, even under pure oxygen and high temperatures, while it proceeds rapidly through humid air. The adsorption of water molecules on molybdenite is necessary for the wet oxidation/weathering of molybdenite. Therefore, we employ kinetic Monte Carlo modeling to clarify the adsorption isotherm, site preferences and kinetics of water on different surfaces of molybdenite. Our results indicate that (1) the adsorption capacity and adsorption rate coefficient of H2O on the (110) surface are significantly larger than those on the (001) surface at a temperature of 0~100 °C and a relative humidity of 0~100%, suggesting that the (110) surface is the predominant surface controlling the reactivity and solubility of molybdenite in its interaction with water; (2) the kinetic Monte Carlo modeling considering the adsorption/desorption rate of H2O, dissociation/formation rate of H2O and adsorption/desorption of dissociated H indicates that the adsorption and dissociation of H2O on the (110) surface can be completed in one microsecond (ms) at 298 K and in wet conditions; (3) the adsorption and dissociation of H2O on molybdenite are not the rate-limiting steps in the wet oxidation/weathering of molybdenite; and (4) kinetic Monte Carlo modeling explains the experimental SIMS observation that H2O and OH (rather than H+/H- or H2O) occupy the surface of MoS2 in a short time. This study provides new molecular-scale insights to aid in our understanding of the oxidation/weathering mechanism of molybdenite as the predominant mineral containing molybdenum in the Earth's crust.

7.
Angew Chem Int Ed Engl ; 61(30): e202205187, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35586955

RESUMO

Rechargeable magnesium (Mg) batteries based on conventional electrolytes are seriously plagued by the formation of the ion-blocking passivation layer on the Mg metal anode. By tracking the Mg2+ solvation sheath, this work links the passivation components to the Mg2+ -solvents (1,2-dimethoxyethane, DME) coordination and the consequent thermodynamically unstable DME molecules. On this basis, we propose a methodology to tailor solvation coordination by introducing the additive solvent with extreme electron richness. Oxygen atoms in phosphorus-oxygen groups compete with that in carbon-oxygen groups of DME for the coordination with Mg2+ , thus softening the solvation sheath deformation. Meanwhile, the organophosphorus molecules in the rearranged solvation sheath decompose on the Mg surface, increasing the Mg2+ transport and electrical resistance by three and one orders of magnitude, respectively. Consequently, the symmetric cells exhibit superior cycling performance of over 600 cycles with low polarization.

8.
Angew Chem Int Ed Engl ; 60(11): 5806-5810, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33474803

RESUMO

A novel Pd0 -catalyzed highly regio- and enantioselective [3+2] spiroannulation reaction has been developed for rapid assembly of a new class of [5,5] spirocyclic carbo- and heterocycles. Notably, the regioselectivity could be dominated by fine-tuning of the Pd-π-allyl intermediate. An array of coupling partners could be well-tolerated with excellent regio-, and enantioselectivities. Moreover, the potential application of this reaction was exemplified by several further transformations.

9.
Angew Chem Int Ed Engl ; 60(48): 25252-25257, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34580972

RESUMO

Cyclopropanes are an important class of building blocks in organic synthesis. Herein, a ring-opening/arylcarboxylation/acylation cascade reaction for the 1,3-difunctionalization of aryl cyclopropanes enabled by cooperative NHC and organophotoredox catalysis is reported. The cascade works on monosubstituted cyclopropanes that are in contrast to the heavily investigated donor-acceptor cyclopropanes more challenging to be difunctionalized. The key step is a radical/radical cross coupling of a benzylic radical generated in the photoredox catalysis cycle with a ketyl radical from the NHC catalysis cycle. The transformation features metal-free reaction conditions and tolerates a diverse range of functionalities.

10.
Chemistry ; 26(67): 15354-15377, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32705722

RESUMO

The efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis. The inherent entropic penalty associated with achieving these transformations has impressively been overcome with development of catalysis, whereby the reaction components can be pre-organized through activation by transition-metal-catalysis. The fine-tuning of metal/ligand combinations as well as reaction conditions allows for achieving chemo-, regio-, diastereo- and enantioselectivity in these transformations. Herein, we discuss recent advances in transition-metal-catalyzed construction of seven-membered rings via combination of 2-4 components mediated by a variety of metals. An emphasis is placed on the mechanistic aspects of these transformations to both illustrate the state of the science and to highlight the unique application of novel processes of transition-metals in these transformations.

11.
Angew Chem Int Ed Engl ; 59(3): 1243-1247, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31610098

RESUMO

A novel Pd0 -catalyzed asymmetric [4+3] annulation reaction of two readily accessible starting materials has been developed for building seven-membered heterocyclic architectures. The potential [3+2] side pathway could be suppressed though fine tuning of the conditions. A broad scope of cycloaddition donors and acceptors participated in the transformation with excellent chemo-, regio-, diastereo-, and enantioselectivtities, leading to valuable tetrahydroazepines and benzo[b]oxepines.

12.
Angew Chem Int Ed Engl ; 59(2): 653-657, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31654599

RESUMO

Palladium-catalyzed alkene-directed cross-coupling of aryl iodide with another aryl halide through C-H arylation opens a unique avenue for unsymmetrical biaryl-derived molecules. However, homo-coupling of aryl iodides often erodes the overall synthetic efficiency. Reported herein is a highly chemoselective Pd0 -catalyzed alkyne-directed cross-coupling of aryl iodides with bromophenols, which was subsequently followed by phenol dearomatization to furnish a very attractive [2+2+1] spiroannulation. Notably, possible homo-coupling of aryl iodides was not observed at all. Mechanistic studies indicated that a five-membered aryl/vinyl palladacycle most likely accounts for promoting the key step of biaryl cross-coupling.

13.
Phys Chem Chem Phys ; 20(18): 12845-12857, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29700517

RESUMO

Despite numerous studies devoted to the various properties of γ-Al2O3, the explorations of its catalytic activity remain scarce. In this study, density functional theory calculations are performed to study the elementary adsorption and reaction mechanisms for syngas conversion on partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin. It is found that the partially hydroxylated γ-Al2O3(110D) surface with the hydroxyl coverage of 8.9 OH nm-2 is formed by two dissociative adsorptions of H2O on the dry γ-Al2O3(110D) surface. The hydroxyl coverage conditions play a key role in determining the dominant reaction mechanism on account of the existence of strong hydrogen bonds. The preferential pathway for syngas conversion with assistance of methanol over the partially hydroxylated γ-Al2O3(110D) surface in liquid paraffin has been proven to be CH3OH → CH3O + H → CH3 + OH, CH3 + CO → CH3CO. C2H5OH is then formed by successive hydrogenation via the pathway CH3CO + 3H → CH3CHO + 2H → CH3CH2O + H → C2H5OH. Here, CH3CHO formation by CH3CO hydrogenation is not inhibited. Actually, with the assistance of partially hydroxylated γ-Al2O3, CH3CHO has been synthesized with high selectivity in our previous experiment by the reaction of methanol and syngas, which provides favorable evidence for our results. The rate-limiting step is the formation of CH3O from CH3OH dehydrogenation with an activation barrier of 122.2 kJ mol-1. Moreover, the reaction barrier of CO insertion into the adsorbed CH3 group is at least 89.4 kJ mol-1, lower than those of CH4, C2H6, and CH3OCH3 formations. ADCH charge and ESP analyses indicate that the typical (Al, O) Lewis acid-base pair may have a significant effect upon the initial C-C chain formation. Thus, the present study provides a new approach for the rational tailoring and designing of new catalysts with superior reactivity involved in syngas conversion.

14.
Org Biomol Chem ; 15(21): 4601-4608, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28509925

RESUMO

A new cascade process has been accomplished for the synthesis of tetrahydro-1H-cyclopenta[c]furans through palladium-catalyzed [2 + 2 + 1] cyclization of 1,6-enynes with vinyl bromides. Notably, the key feature of this transformation is the use of vinyl bromides as the C1 building block. Various functionalized tetrahydro-1H-cyclopenta[c]furans bearing two quaternary carbon centers could be obtained in good yields with excellent diastereoselectivities.

15.
Phys Chem Chem Phys ; 19(29): 19300-19307, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28702626

RESUMO

An in-depth understanding of the reaction mechanism at the molecular level is the key to guide the synthesis of ethanol over the CuZnAl catalyst, which is one of the major challenges for ethanol application in energy. Reported herein is a density functional theory study of ethanol synthesis from mixed methanol and syngas on the γ-AlOOH(100) surface. The possible elementary reactions are unambiguously identified and for the first time we confirm the high reactivity of the γ-AlOOH(100) surface for the initial C-C chain formation via CO insertion into CH3, which has a 62.8 kJ mol-1 (0.65 eV) activation barrier that is significantly lower than the barriers previously reported. And its corresponding reaction energy is -288.2 kJ mol-1 (-2.99 eV). Bader charge analyses indicate that it is advantageous for the nucleophilic attack of CO to the neighboring CH3 on the γ-AlOOH(100) surface. Our calculations show that ethanol synthesis starts with CH3OH dissociation, goes through CH3O dissociation to yield CH3, subsequently, CO inserts into CH3 to form CH3CO, which is further hydrogenated to yield CH3CHO and eventually obtain C2H5OH. And the formation of intermediate CH3 is the rate-determining step of the overall reaction. The results not only provide new mechanistic insights into the role of γ-AlOOH but also may be useful for the rational designing and optimizing of the CuZnAl catalyst for ethanol synthesis.

16.
Angew Chem Int Ed Engl ; 56(10): 2767-2771, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28128533

RESUMO

A novel palladium(0)-catalyzed dearomatizing [2+2+1] spiroannulation of 1-bromo-2-naphthols with aryl iodides and alkynes was developed for the rapid assembly of spiro[indene-1,1'-naphthalen]-2'-ones. This three-component cascade reaction was realized through consecutive Catellani-type C-H activation, unsymmetrical biaryl coupling, alkyne migratory insertion, and arene dearomatization. The potential utility of our method is illustrated by the one-step construction of the polycyclic skeletons of dalesconols A and B from alkyne-tethered aryl iodides and 1-bromo-2-naphthol.

17.
J Am Chem Soc ; 138(42): 13810-13813, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27718562

RESUMO

An inverse CeO2/Cu2O/Cu(111) catalyst is able to activate methane at room temperature producing C, CHx fragments and COx species on the oxide surface. The addition of water to the system leads to a drastic change in the selectivity of methane activation yielding only adsorbed CHx fragments. At a temperature of 450 K, in the presence of water, a CH4 → CH3OH catalytic transformation occurs with a high selectivity. OH groups formed by the dissociation of water saturate the catalyst surface, removing sites that could decompose CHx fragments, and generating centers on which methane can directly interact to yield methanol.

18.
J Org Chem ; 80(6): 3349-56, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25723782

RESUMO

An intermolecular spiroannulation reaction of appropriately substituted 2-arylphenols with internal alkynes has been developed by using a Ru(II) catalyst and an oxidant. This transformation was realized by a phenol-directed C-H activation, migratory insertion of the alkyne, and subsequent dearomatization of the phenolic ring, providing a broad range of highly functionalized spirocyclic compounds in moderate yields with high regioselectivity.

19.
Angew Chem Int Ed Engl ; 54(51): 15385-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26768530

RESUMO

A novel palladium(II)-catalyzed [5+2] oxidative annulation of readily available o-arylanilines with alkynes has been developed for building a seven-membered N-heterocyclic architecture containing a biaryl linkage. This method is applicable to a wide range of unprotected o-arylanilines and internal alkynes, and results in the chemoselective preparation of imine-containing dibenzo[b,d]azepines in high yields with excellent diastereoselectivity with respect to the two types of stereogenic elements.

20.
Angew Chem Int Ed Engl ; 54(8): 2356-60, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25564754

RESUMO

Catalytic asymmetric aminative dearomatization of 1-substituted 2-naphthols was successfully implemented with electrophilic azodicarboxylates under the catalysis of chiral Sc(III)/pybox complexes. This intermolecular reaction represents a hitherto unknown enantioselective C-N bond-forming process through direct dearomatization of phenolic compounds to generate chiral nitrogen-containing quaternary carbon stereocenters.


Assuntos
Naftóis/química , Escândio/química , Aminação , Catálise , Mesilatos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA