RESUMO
Thyroid hormones (TH) are central hormonal regulators, orchestrating gene expression and complex biological processes vital for growth and reproduction in variable environments by triggering specific developmental processes in response to external cues. TH serve distinct roles in different species: inducing metamorphosis in amphibians or teleost fishes, governing metabolic processes in mammals, and acting as effectors of seasonality. These multifaceted roles raise questions about the underlying mechanisms of TH action. Recent evidence suggests a shared ecological role of TH across vertebrates, potentially extending to a significant portion of bilaterian species. According to this model, TH ensure that ontogenetic transitions align with environmental conditions, particularly in terms of energy expenditure, helping animals to match their ontogenetic transition with available resources. This alignment spans post-embryonic developmental transitions common to all vertebrates and more subtle adjustments during seasonal changes. The underlying logic of TH function is to synchronize transitions with the environment. This review briefly outlines the fundamental mechanisms of thyroid signalling and shows various ways in which animals use this hormonal system in natural environments. Lastly, we propose a model linking TH signalling, environmental conditions, ontogenetic trajectory and metabolism. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Assuntos
Receptores dos Hormônios Tireóideos , Hormônios Tireóideos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Vertebrados/metabolismo , Peixes/metabolismo , Anfíbios/metabolismo , Mamíferos/metabolismoRESUMO
The symbiosis between giant sea anemones, algae of the family Symbiodiniaceae, and anemonefish is an iconic example of a mutualistic trio1,2. Molecular analyses have shown that giant sea anemones hosting anemonefish belong to three clades: Entacmaea, Stichodactyla, and Heteractis3,4,5 (Figure 1A). Associations among 28 species of anemonefish and 10 species of giant sea anemone hosts are complex. Some fish species are highly specialized to only one anemone species (e.g., Amphiprion frenatus with Entacmaea quadricolor), whereas others are more generalist (e.g., Amphiprion clarkii)1,2,6. Reasons for host preferences are obscured, among other things, by the lack of resolution in the giant sea anemone phylogeny. Here, we generated a transcriptomic dataset from 55 sea anemones collected from southern Japan to reconstruct these phylogenetic relationships. We observed that the bubble-tip sea anemone E. quadricolor, currently considered a single species, can be separated into at least four cryptic lineages (A-D). Surprisingly, these lineages can be precisely distinguished by observing their association with anemonefish: A. frenatus only associates with lineage D, whereas A. clarkii lives in the other three lineages.