Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 187(3): 819-30, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20497351

RESUMO

*Continuous stem radius changes (DR) include growth and water-related processes on the individual tree level. DR is assumed to provide carbon turnover information complementary to net ecosystem productivity (NEP) which integrates fluxes over the entire forest ecosystem. Here, we investigated the unexpectedly close relationship between NEP and DR and asked for causalities. *NEP (positive values indicate carbon sink) measured by eddy covariance over 11 yr was analysed at three time scales alongside automated point dendrometer DR data from a Swiss subalpine Norway spruce forest. *On annual and monthly scales, the remarkably close relationship between NEP and DR was positive, whereas on a half-hourly scale the relationship was negative. Gross primary production (GPP) had a similar explanatory power at shorter time scales, but was significantly less correlated with DR on an annual scale. *The causal explanation for the NEP-DR relationship is still fragmentary; however, it is partially attributable to the following: radial stem growth with a strong effect on monthly and annual increases in NEP and DR; frost-induced bark tissue dehydration with a parallel decrease in both measures on a monthly scale; and transpiration-induced DR shrinkage which is negatively correlated with assimilation and thus with NEP on a half-hourly scale.


Assuntos
Ecossistema , Picea/anatomia & histologia , Caules de Planta/anatomia & histologia , Árvores/anatomia & histologia , Microclima , Noruega , Chuva , Análise de Regressão , Comunicações Via Satélite , Estações do Ano , Suíça , Temperatura , Fatores de Tempo
2.
New Phytol ; 184(2): 353-364, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19674333

RESUMO

* The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the potential tradeoffs between traits. * Traits measured included wood density, radial growth, xylem anatomy, sapwood- and leaf-specific hydraulic conductivity (K(S) and K(L)), vulnerability to embolism, leaf-to-sapwood area ratio (A(L) : A(S)), needle carbon isotope discrimination (Delta13C) and nitrogen content, and specific leaf area. * Between-population variability was high for most of the hydraulic traits studied, but it was directly associated with climate dryness (defined as a combination of atmospheric moisture demand and availability) only for A(L) : A(S), K(L) and Delta13C. Shoot radial growth and A(L) : A(S) declined with stand development, which is consistent with a strategy to avoid exceedingly low water potentials as tree size increases. In addition, we did not find evidence at the intraspecific level of some associations between hydraulic traits that have been commonly reported across species. * The adjustment of Scots pine's hydraulic system to local climatic conditions occurred primarily through modifications of A(L) : A(S) and direct stomatal control, whereas intraspecific variation in vulnerability to embolism and leaf physiology appears to be limited.


Assuntos
Adaptação Fisiológica , Clima , Fenótipo , Pinus sylvestris/fisiologia , Água/fisiologia , Adaptação Fisiológica/genética , Isótopos de Carbono , Desidratação , Meio Ambiente , Variação Genética , Nitrogênio/análise , Pinus sylvestris/genética , Folhas de Planta/anatomia & histologia , Estômatos de Plantas , Análise de Componente Principal , Madeira/anatomia & histologia , Xilema/anatomia & histologia
3.
New Phytol ; 179(4): 1070-1079, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18540974

RESUMO

Ultrasonic acoustic emission (UAE) in trees is often related to collapsing water columns in the flow path as a result of tensions that are too strong (cavitation). However, in a decibel (dB) range below that associated with cavitation, a close relationship was found between UAE intensities and stem radius changes. UAE was continuously recorded on the stems of mature field-grown trees of Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) at a dry inner-Alpine site in Switzerland over two seasons. The averaged 20-Hz records were related to microclimatic conditions in air and soil, sap-flow rates and stem-radius fluctuations detrended for growth (Delta W). Within a low-dB range (27 +/- 1 dB), UAE regularly increased and decreased in a diurnal rhythm in parallel with DeltaW on cloudy days and at night. These low-dB emissions were interrupted by UAE abruptly switching between the low-dB range and a high-dB range (36 +/- 1 dB) on clear, sunny days, corresponding to the widely supported interpretation of UAE as sound from cavitations. It is hypothesized that the low-dB signals in drought-stressed trees are caused by respiration and/or cambial growth as these physiological activities are tissue water-content dependent and have been shown to produce courses of CO(2) efflux similar to our courses of Delta W and low-dB UAE.


Assuntos
Árvores/fisiologia , Ultrassom , Transporte Biológico , Fenômenos Biomecânicos , Ritmo Circadiano , Desidratação , Pinus sylvestris/metabolismo , Pinus sylvestris/fisiologia , Quercus/metabolismo , Quercus/fisiologia , Árvores/metabolismo , Água/metabolismo , Xilema/metabolismo , Xilema/fisiologia
4.
Tree Physiol ; 25(2): 147-56, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15574396

RESUMO

Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaWE), with soil water potential (Psisoil) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth. We followed changes in DeltaW and DeltaWE in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaWE. This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psisoil or VPD alone provided poorer estimates of DeltaW than a model incorporating both factors. As a first approximation of DeltaWE, Psisoil can be weighted so that the negative mean Psisoil reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: approximately 65%, P. abies: approximately 70%, P. sylvestris: approximately 75%). The differences in DeltaW among species can be partially explained by a different weighting of Psisoil against VPD. The DeltaW of P. sylvestris was more dependent on Psisoil than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.


Assuntos
Árvores/fisiologia , Clima , Desidratação , Modelos Biológicos , Picea/fisiologia , Pinus sylvestris/fisiologia , Caules de Planta/fisiologia , Quercus/fisiologia , Estações do Ano , Solo , Água
6.
Tree Physiol ; 21(9): 561-9, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11390300

RESUMO

Internal water reserves in bark and foliage of trees contribute to transpiration (T) and play an essential role in optimizing water transport by buffering extreme peaks of water consumption. We examined patterns of stem shrinkage and their relationship to tree water dynamics. We measured fluctuations in root radius and stem radius at different stem heights, T of twigs at the top of the crown and sap flow velocities in stem sections of mature subalpine Norway spruce (Picea abies (L.) Karst.) trees over 2 years. The output of each sensor was coupled by physical functions to a mechanistic flow and storage model of tree water relations. The data verified the model-predicted lag in water storage depletion in response to the onset of transpiration and the lag increased with increasing distance from the crown periphery. Between the crown and stem base, the delay ranged from a few minutes to several hours, depending on microclimatic conditions and tree water status. Stem volume changes were proportional to the amount of water exchanged between the elastic tissues of the bark and the rigid xylem, indicating that the "peristaltic" wave of stem contraction along the flow path represented depletion of water stored in bark. On a daily basis, stems lost between 0.2 and 0.5% of their volume as a result of bark dehydration, corresponding to about 2 to 5 l of water. This water contributed directly to T. According to the model based on hydraulic principles, there are three main components underlying the dynamics of water storage depletion: flow resistance, storage capacities of needles and bark, and T of each tree section. The resistances and capacities were proportional to the response delay, whereas T in the lower parts of the tree was inversely proportional. The pattern of T within the crown depended on water intercepted by the branches. Because of these weather-dependent factors, there was no time constant for the response delay along the flow path. Nevertheless, the upper crown and the root section tended to have longer response delays per meter of flow path than the stem. The diurnal course of stem radius fluctuations represents the sum of all external and internal conditions affecting tree water relations; stem radius fluctuations, therefore, provide a sensitive measure of tree water status.


Assuntos
Picea/fisiologia , Caules de Planta/fisiologia , Árvores/fisiologia , Picea/anatomia & histologia , Caules de Planta/anatomia & histologia , Suíça , Árvores/anatomia & histologia , Água/fisiologia
7.
Tree Physiol ; 21(12-13): 869-77, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11498334

RESUMO

Internal water reserves are depleted and replenished daily, not only in succulent plants, but also in trees. The significance of these changes in tissue water storage for tree water relations was investigated by monitoring diurnal fluctuations in stem radius. In 6-year-old potted Norway spruce (Picea abies (L.) Karst.) trees, whole-tree transpiration rate (T), sap flow at the stem base and fluctuations in stem radius were measured at 10-min intervals over eight successive weeks. The dynamics of diurnal water storage in relation to the daily course of water movement was simulated and the contribution of stored water to T quantified. The finding that, in P. abies, the course of bark water content is linearly coupled to stem radius fluctuations provided the basis for linking stem radius changes to a functional flow and storage model for tree water relations. This model, which consists of physical functions only and is driven by a single input variable (T), accurately simulates the diurnal course of changes in stem radius and water storage of the tree crown and stem. It was concluded that fluctuations were mainly determined by the course of transpiration. The availability of soil water and the degree to which storage tissues were saturated were also factors affecting the diurnal course of stem radius changes. Internally stored water contributed to daily transpiration even in well-watered trees, indicating that stored water plays an important role not only during periods of drought, but whenever water transport occurs within the tree. Needle and bark water reserves were most heavily depleted during transpiration. Together they supplied approximately 10% of daily T on sunny days, and up to 65% on cloudy days. On a daily basis, the crown (mainly needles) contributed approximately eight times more water to T than the stem (mainly bark). The depletion of the two storage pools and the water movements observed in the trees always occurred in the same sequence. In the morning, T first caused a depletion of the water stored in the crown. It then caused depletion of bark storage tissues at ever increasing distances from the needles. Up to 75% of the transpired water could be withdrawn from storage tissues when the increase in T reached a maximum.


Assuntos
Ritmo Circadiano/fisiologia , Caules de Planta/fisiologia , Árvores/fisiologia , Modelos Biológicos , Picea/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia
8.
Tree Physiol ; 22(15-16): 1125-36, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12414372

RESUMO

We used local microclimatic conditions and twig sap flow rates to interpret midday stomatal closure in the canopies of two 250-year-old Norway spruce (Picea abies (L.) Karst.) trees at a subalpine site in the Swiss Alps (1,650 m a.s.l.). Both trees showed midday stomatal closure on most clear summer days, despite the permanently wet soil. We used a modified Penman-Monteith formula to simulate potential transpiration of single twigs (ET(T)) based on high-resolution temporal and spatial microclimate data obtained both inside and outside the crowns. Comparison of calculated ET(T) values and measured twig sap flow rates enabled us to pinpoint the occurrence of midday stomatal closure and the microclimatic conditions present at that time. We found that vapor pressure deficit (and for upper-crown twigs, ET(T)) largely explained the timing of initial midday stomatal closure but gave no explanation for the different patterns of stomatal behavior after initial closure in upper- and lower-crown twigs. After the initial stomatal closure, upper-crown twigs maintained high transpiration rates by continuously regulating stomatal aperture, whereas stomatal aperture decreased rapidly in lower-crown twigs and did not increase later in the day. Midday stomatal closure in lower-crown twigs occurred on average 1 h later than in upper-crown twigs. However, the microclimate at the time of initial stomatal closure was similar at both crown locations except that lower-crown twigs received significantly less solar radiation than upper-crown twigs both at the time of initial stomatal closure and afterwards. High rates of sap flow in twigs did not always lead to stomatal closure and therefore could not explain the phenomenon. We conclude that stomatal conductance can be modeled accurately only when both local microclimatic conditions and tree water status are known. Further, we hypothesize that both the quantity and quality of light play an important role in the reopening of closed stomata during the day.


Assuntos
Picea/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Biomassa , Clima , Umidade , Folhas de Planta/fisiologia , Suíça , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA