Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cells ; 9(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114738

RESUMO

Multiple myeloma (MM) is a plasma cell neoplasm that remains incurable due to innate or acquired resistance. Although MM cells produce high intracellular levels of reactive oxygen species (ROS), we hypothesised that they could remain sensitive to ROS unbalance. We tested if the inhibition of ROS, on one hand, or the overproduction of ROS, on the other, could (re)sensitise cells to bortezomib (BTZ). Two drugs were used in a panel of MM cell lines with various responses to BTZ: VAS3947 (VAS), an inhibitor of NADPH oxidase and auranofin (AUR), an inhibitor of thioredoxin reductase (TXNRD1), an antioxidant enzyme overexpressed in MM cells. We used several culture models: in suspension, on a fibronectin layer, in coculture with HS-5 mesenchymal cells, and/or in 3-D culture (or spheroids) to study the response of MM primary cells and cell lines. Several MM cell lines were sensitive to VAS but the combination with BTZ showed antagonistic or additive effects at best. By contrast, in all culture systems studied, the combined AUR/BTZ treatment showed synergistic effects on cell lines, including those less sensitive to BTZ and primary cells. MM cell death is due to the activation of apoptosis and autophagy. Modulating the redox balance of MM cells could be an effective therapy for refractory or relapse post-BTZ patients.


Assuntos
Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/etiologia , Oxirredução , Transdução de Sinais/efeitos dos fármacos
2.
Cell Rep ; 30(3): 739-754.e4, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968250

RESUMO

Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores de Calcitriol/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azacitidina/farmacologia , Medula Óssea/efeitos dos fármacos , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Progressão da Doença , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Oncogenes , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Ensaio Tumoral de Célula-Tronco
3.
Oncol Ther ; 7(2): 121-130, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32699982

RESUMO

INTRODUCTION: EVI1 (MECOM)-positive acute myeloid leukemia (AML) cells have shown in vitro sensitivity to all-trans-retinoic acid (ATRA) by inducing differentiation, cell death, and decreased leukemic engraftment. METHODS: In this pilot study, we investigated the response to ATRA in 13 high-risk AML patients with overexpression of EVI1. RESULTS: Seven of the 13 patients (53.8%) achieved complete remission (CR), and response can be combined with a decreased of the leukemia stem cell pool. CONCLUSION: These primary results tend to confirm in vitro results and suggest that addition of ATRA might be of benefit in the treatment of patients with EVI1-positive AML.

4.
Exp Hematol ; 61: 36-44, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477370

RESUMO

The microenvironment (niche) governs the fate of stem cells (SCs) by balancing self-renewal and differentiation. Increasing evidence indicates that the tumor niche plays an active role in cancer, but its important properties for tumor initiation progression and resistance remain to be identified. Clinical data show that leukemic stem cell (LSC) survival is responsible for disease persistence and drug resistance, probably due to their sustained interactions with the tumor niche. Bone morphogenetic protein (BMP) signaling is a key pathway controlling stem cells and their niche. BMP2 and BMP4 are important in both the normal and the cancer context. Several studies have revealed profound alterations of the BMP signaling in cancer SCs, with major deregulations of the BMP receptors and their downstream signaling elements. This was illustrated in the hematopoietic system by pioneer studies in chronic myelogenous leukemia that may now be expanded to acute myeloid leukemia and lymphoid leukemia, as reviewed here. At diagnosis, cells from the leukemic microenvironment are the major providers of soluble BMPs. Conversely, LSCs display altered receptors and downstream BMP signaling elements accompanied by altered functional responses to BMPs. These studies reveal the role of BMPs in tumor initiation, in addition to their known effects in later stages of transformation and progression. They also reveal the importance of BMPs in fueling cell transformation and expansion by overamplifying a natural SC response. This mechanism may explain the survival of LSCs independently of the initial oncogenic event and therefore may be involved in resistance processes.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Leucemia Mieloide/fisiopatologia , Humanos , Pesquisa/tendências , Transdução de Sinais , Microambiente Tumoral
5.
Cell Death Dis ; 9(10): 1011, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262802

RESUMO

In a significant number of cases cancer therapy is followed by a resurgence of more aggressive tumors derived from immature cells. One example is acute myeloid leukemia (AML), where an accumulation of immature cells is responsible for relapse following treatment. We previously demonstrated in chronic myeloid leukemia that the bone morphogenetic proteins (BMP) pathway is involved in stem cell fate and contributes to transformation, expansion, and persistence of leukemic stem cells. Here, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in AML patients at diagnosis. BMP2 and BMP4 protein concentrations are elevated within patients' bone marrow with a BMP4-dominant availability. This overproduction likely depends on the bone marrow microenvironment, since MNCs do not overexpress BMP4 transcripts. Intrinsically, the receptor BMPR1A transcript is increased in leukemic samples with more cells presenting this receptor at the membrane. This high expression of BMPR1A is further increased upon BMP4 exposure, specifically in AML cells. Downstream analysis demonstrated that BMP4 controls the expression of the survival factor ΔNp73 through its binding to BMPR1A. At the functional level, this results in the direct induction of NANOG expression and an increase of stem-like features in leukemic cells, as shown by ALDH and functional assays. In addition, we identified for the first time a strong correlation between ΔNp73, BMPR1A and NANOG expression with patient outcome. These results highlight a new signaling cascade initiated by tumor environment alterations leading to stem-cell features and poor patients' outcome.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/metabolismo , Microambiente Tumoral/fisiologia
6.
Expert Opin Drug Discov ; 12(7): 747-753, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28504025

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) represents a disease with a very poor outcome and remains an area of significant unmet need necessitating novel therapeutic strategies. Among novel therapeutic agents, vosaroxin is a first-in-class anticancer quinolone derivative that targets topoisomerase II and induces site-selective double-strand breaks in DNA, leading to tumor cell apoptosis. Areas covered: Herein, the authors provide a comprehensive review of the preclinical development of vosaroxin. This includes coverage of vosaroxin's mechanism of action in addition to its pharmacology and of the main studies reported over the past few years with vosaroxin when used to treat adult AML. Expert opinion: Given that vosaroxin is associated with fewer potential side effects, it may be of benefit to elderly patients with relapsed/refractory AML and to those with additional comorbidities who have previously received an anthracycline and cytarabine combination. Furthermore, vosaroxin also was seen to be active in multidrug-resistant preclinical models. However, further studies have to be performed to better evaluate its place in the armamentarium against AML.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Naftiridinas/uso terapêutico , Tiazóis/uso terapêutico , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/patologia , Naftiridinas/efeitos adversos , Naftiridinas/farmacologia , Tiazóis/efeitos adversos , Tiazóis/farmacologia , Inibidores da Topoisomerase/efeitos adversos , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/uso terapêutico
7.
Stem Cell Investig ; 4: 67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815178

RESUMO

Stem cells (SCs) have been extensively studied in the context of regenerative medicine. Human hematopoietic stem cell (HSC)-based therapies have been applied to treat leukemic patients for decades. Handling of mesenchymal stem cells (MSCs) has also raised hopes and concerns in the field of tissue engineering. Lately, discovery of cell reprogramming by Yamanaka's team has profoundly modified research strategies and approaches in this domain. As we gain further insight into cell fate mechanisms and identification of key actors and parameters, this also raises issues as to the manipulation of SCs. These include the engraftment of manipulated cells and the potential predisposition of those cells to develop cancer. As a unique and pioneer model, the use of HSCs to provide new perspectives in the field of regenerative and curative medicine will be reviewed. We will also discuss the potential use of various SCs from embryonic to adult stem cells (ASCs), including induced pluripotent stem cells (iPSCs) as well as MSCs. Furthermore, to sensitize clinicians and researchers to unresolved issues in these new therapeutic approaches, we will highlight the risks associated with the manipulation of human SCs from embryonic or adult origins for each strategy presented.

8.
Sci Adv ; 1(8): e1500221, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601252

RESUMO

Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD-induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD(+) cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy.

9.
Cell Rep ; 11(9): 1446-57, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26004183

RESUMO

AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Imidazóis/farmacologia , Leucemia Mieloide Aguda/metabolismo , Complexos Multiproteicos/agonistas , Pirimidinonas/farmacologia , Animais , Imunofluorescência , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR
10.
PLoS One ; 8(6): e65998, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840388

RESUMO

The prognosis of acute myeloid leukemia (AML) in elderly (≥65 years) patients is poor and treatment remains non-consensual especially for those who are not eligible for intensive therapies. Our group has shown that in vitro the iron chelator deferasirox (DFX) synergizes with vitamin D (VD) to promote monocyte differentiation in primary AML cells. Herein, we present results from a retrospective case-control study in which the association of DFX (1-2 g/d) and 25-hydroxycholecalciferol (100,000 IU/week) (DFX/VD) was proposed to patients following demethylating agents failure. Median survival of patients treated with DFX/VD combination (n = 17) was significantly increased in comparison with matched patients receiving best supportive care (BSC) alone (n = 13) (10.4 versus 4 months respectively). In addition, the only factor associated to an increased overall survival in DFX/VD-treated patients was serum VD levels. We conclude that DFX/VD treatment correlated with increased overall survival of AML patients in this retrospective cohort of elderly patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azacitidina/uso terapêutico , Benzoatos/administração & dosagem , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Deferasirox , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Resultado do Tratamento , Triazóis/administração & dosagem , Vitamina D/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA