Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 13(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652751

RESUMO

This study aimed to investigate the effects of two commercially available fish oils (FOs) containing different proportions of two omega-3 fatty acids (FA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the metabolic and endocrine dysfunctions of white adipose tissue resulting from obesity. Male C57BL/6J mice, 8 weeks old, received a control or high-fat diet (CO and HF groups, with 9% and 59% energy from fat, respectively) for 8 weeks. The next 8 weeks, the HF group was subdivided into HF, HF+FO/E (HF+5:1 EPA:DHA), and HF+FO/D (HF+5:1 DHA:EPA). Supplementation was performed by gavage, three times a week. All groups that received the HF diet had lower food and caloric intake, but a higher fat intake, body weight (BW) gain, glucose intolerance, and a significant increase in inguinal (ING), retroperitoneal (RP), and epididymal (EPI) adipose tissues when compared to the CO group. Additionally, HF and HF+FO/D groups showed insulin resistance, adipocyte hypertrophy, increased lipolysis and secretion of TNF-α, resistin and IL-10 adipokines by ING and RP adipocytes, and adiponectin only by the HF+FO/D group in ING adipocytes. All of these effects were completely reversed in the HF+FO/E group, which also showed partial reversion in BW gain and glucose intolerance. Both the HF+FO/E and HF+FO/D groups showed a reduction in ING and RP adipose depots when compared to the HF group, but only HF+FO/E in the EPI depot. HF+FO/E, but not HF+FO/D, was able to prevent the changes triggered by obesity in TNF-α, Il-10, and resistin secretion in ING and RP depots. These results strongly suggest that different EPA:DHA ratios have different impacts on the adipose tissue metabolism, FO being rich in EPA, but not in DHA, and effective in reversing the changes induced by obesity.


Assuntos
Ácido Eicosapentaenoico/farmacologia , Óleos de Peixe/farmacologia , Alimentos Fortificados , Síndrome Metabólica/terapia , Obesidade/terapia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Resistência à Insulina/fisiologia , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/fisiopatologia , Aumento de Peso/efeitos dos fármacos
2.
Nutrients ; 13(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671850

RESUMO

The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.


Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/terapia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações
3.
Sci Rep ; 7(1): 3937, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638152

RESUMO

Obesogenic diets increase body weight and cause insulin resistance (IR), however, the association of these changes with the main macronutrient in the diet remains to be elucidated. Male C57BL/6 mice were fed with: control (CD), CD and sweetened condensed milk (HS), high-fat (HF), and HF and condensed milk (HSHF). After 2 months, increased body weight, glucose intolerance, adipocyte size and cholesterol levels were observed. As compared with CD, HS ingested the same amount of calories whereas HF and HSHF ingested less. HS had increased plasma AST activity and liver type I collagen. HF caused mild liver steatosis and hepatocellular damage. HF and HSHF increased LDL-cholesterol, hepatocyte and adipocyte hypertrophy, TNF-α by macrophages and decreased lipogenesis and adiponectin in adipose tissue (AT). HSHF exacerbated these effects, increasing IR, lipolysis, mRNA expression of F4/80 and leptin in AT, Tlr-4 in soleus muscle and IL-6, IL-1ß, VCAM-1, and ICAM-1 protein in AT. The three obesogenic diets induced obesity and metabolic dysfunction. HS was more proinflammatory than the HF and induced hepatic fibrosis. The HF was more detrimental in terms of insulin sensitivity, and it caused liver steatosis. The combination HSHF exacerbated the effects of each separately on insulin resistance and AT inflammatory state.


Assuntos
Dieta Hiperlipídica , Inflamação/etiologia , Resistência à Insulina , Leite , Obesidade/etiologia , Adipócitos/metabolismo , Animais , Mediadores da Inflamação/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Edulcorantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA