Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 599(7885): 491-496, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711951

RESUMO

Protein expression and turnover are controlled through a complex interplay of transcriptional, post-transcriptional and post-translational mechanisms to enable spatial and temporal regulation of cellular processes. To systematically elucidate such gene regulatory networks, we developed a CRISPR screening assay based on time-controlled Cas9 mutagenesis, intracellular immunostaining and fluorescence-activated cell sorting that enables the identification of regulatory factors independent of their effects on cellular fitness. We pioneered this approach by systematically probing the regulation of the transcription factor MYC, a master regulator of cell growth1-3. Our screens uncover a highly conserved protein, AKIRIN2, that is essentially required for nuclear protein degradation. We found that AKIRIN2 forms homodimers that directly bind to fully assembled 20S proteasomes to mediate their nuclear import. During mitosis, proteasomes are excluded from condensing chromatin and re-imported into newly formed daughter nuclei in a highly dynamic, AKIRIN2-dependent process. Cells undergoing mitosis in the absence of AKIRIN2 become devoid of nuclear proteasomes, rapidly causing accumulation of MYC and other nuclear proteins. Collectively, our study reveals a dedicated pathway controlling the nuclear import of proteasomes in vertebrates and establishes a scalable approach to decipher regulators in essential cellular processes.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Genes myc , Humanos , Masculino , Mitose , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Proteólise
2.
Immunity ; 45(5): 1148-1161, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851915

RESUMO

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Epigenômica/métodos , Memória Imunológica/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase , Transcriptoma
3.
Nat Methods ; 17(7): 708-716, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514112

RESUMO

CRISPR-Cas9 screens have emerged as a transformative approach to systematically probe gene functions. The quality and success of these screens depends on the frequencies of loss-of-function alleles, particularly in negative-selection screens widely applied for probing essential genes. Using optimized screening workflows, we performed essentialome screens in cancer cell lines and embryonic stem cells and achieved dropout efficiencies that could not be explained by common frameshift frequencies. We find that these superior effect sizes are mainly determined by the impact of in-frame mutations on protein function, which can be predicted based on amino acid composition and conservation. We integrate protein features into a 'Bioscore' and fuse it with improved predictors of single-guide RNA activity and indel formation to establish a score that captures all relevant processes in CRISPR-Cas9 mutagenesis. This Vienna Bioactivity CRISPR score (www.vbc-score.org) outperforms previous prediction tools and enables the selection of sgRNAs that effectively produce loss-of-function alleles.


Assuntos
Alelos , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Animais , Benchmarking , Proteína 9 Associada à CRISPR/genética , Conjuntos de Dados como Assunto , Humanos , Camundongos , Mutação
4.
Antimicrob Agents Chemother ; 59(1): 669-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313223

RESUMO

We present here the first evidence that granzyme B acts against Plasmodium falciparum (50% inhibitory concentration [IC50], 1,590 nM; 95% confidence interval [95% CI], 1,197 to 2,112 nM). We created a novel antimalarial fusion protein consisting of granzyme B fused to a merozoite surface protein 4 (MSP4)-specific single-chain Fv protein (scFv), which targets the enzyme to infected erythrocytes, with up to an 8-fold reduction in the IC50 (176 nM; 95% CI, 154 to 202 nM). This study confirms the therapeutic efficacies of recombinant antibody-mediated antimalarial immunotherapeutics based on granzyme B.


Assuntos
Antimaláricos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Granzimas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antígenos de Protozoários/administração & dosagem , Antimaláricos/administração & dosagem , Granzimas/administração & dosagem , Células HEK293 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/administração & dosagem
5.
Malar J ; 14: 50, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651860

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. METHODS: Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. RESULTS: The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract. CONCLUSIONS: As demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Região Variável de Imunoglobulina/imunologia , Nicotiana/metabolismo , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/isolamento & purificação , Western Blotting , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/isolamento & purificação , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície , Nicotiana/genética
6.
Front Hum Neurosci ; 17: 1062064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908707

RESUMO

Introduction: The cognitive map is an internal representation of the environment and allows us to navigate through familiar environments. It preserves the distances and directions between landmarks which help us orient ourselves in our surroundings. The aim of our task was to understand the role played by theta waves in the cognitive map and especially how the cognitive map is recalled and how the manipulation of distances and directions occurs within the cognitive map. Method: In order to investigate the neural correlates of the cognitive map, we used the Cognitive Map Recall Test, in which 33 participants had to estimate distances and directions between familiar landmarks tailored to their own knowledge. We examined the role of theta waves in the cognitive map, as well as the brain regions that generated them. To that aim, we performed electroencephalographic source imaging while focusing on frequency spectral analysis. Results: We observed increases of theta amplitude in the frontal, temporal, parahippocampal gyri and temporal poles during the recall of the cognitive map. We also found increases of theta amplitude in the temporal pole and retrosplenial cortex during manipulation of directions. Overall, direction processing induces higher theta amplitude than distance processing, especially in the temporal lobe, and higher theta amplitude during recall compared to manipulation, except in the retrosplenial cortex where this pattern was reversed. Discussion: We reveal the role of theta waves as a marker of directional processing in the retrosplenial cortex and the temporal poles during the manipulation of spatial information. Increases in theta waves in frontal, parahippocampal, temporal and temporal pole regions appear to be markers of working memory and cognitive map recall. Therefore, our Cognitive Map Recall Test could be useful for testing directional difficulties in patients. Our work also shows that there are two distinct parts to the cognitive map test: recall and manipulation of spatial information. This is often considered as two similar processes in the literature, but our work demonstrates that these processes could be different, with theta waves from different brain regions contributing to either recall or manipulation; this should be considered in future studies.

7.
Elife ; 122023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622993

RESUMO

Adaptation of the functional proteome is essential to counter pathogens during infection, yet precisely timed degradation of these response proteins after pathogen clearance is likewise key to preventing autoimmunity. Interferon regulatory factor 1 (IRF1) plays an essential role as a transcription factor in driving the expression of immune response genes during infection. The striking difference in functional output with other IRFs is that IRF1 also drives the expression of various cell cycle inhibiting factors, making it an important tumor suppressor. Thus, it is critical to regulate the abundance of IRF1 to achieve a 'Goldilocks' zone in which there is sufficient IRF1 to prevent tumorigenesis, yet not too much which could drive excessive immune activation. Using genetic screening, we identified the E3 ligase receptor speckle type BTB/POZ protein (SPOP) to mediate IRF1 proteasomal turnover in human and mouse cells. We identified S/T-rich degrons in IRF1 required for its SPOP MATH domain-dependent turnover. In the absence of SPOP, elevated IRF1 protein levels functionally increased IRF1-dependent cellular responses, underpinning the biological significance of SPOP in curtailing IRF1 protein abundance.


Assuntos
Regulação da Expressão Gênica , Genes Reguladores , Humanos , Animais , Camundongos , Fator Regulador 1 de Interferon/genética , Aclimatação , Fatores Imunológicos
8.
Science ; 378(6615): eabn5637, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074822

RESUMO

Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Through genetic screens in defined nutrient conditions, we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable because of a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.


Assuntos
Complexo de Golgi , Doenças por Armazenamento dos Lisossomos , Lisossomos , Proteínas , Animais , Complexo de Golgi/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Camundongos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA