Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(8): e3001702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925899

RESUMO

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.


Assuntos
Kelp , Carbono , Sequestro de Carbono , Mudança Climática , Ecossistema
2.
Environ Microbiol ; 23(3): 1638-1655, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400326

RESUMO

Kelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor. Kelp tissue, seawater and sediment were sampled during a 6-month in situ experiment simulating kelp detritus accumulation. Evaluation of the epiphytic bacterial community abundance, structure, taxonomic composition and predicted functional profiles evidenced a biphasic succession. Initially, dominant genera (Hellea, Litorimonas, Granulosicoccus) showed a rapid and drastic decrease in sequence abundance, probably outcompeted by algal polysaccharide-degraders such as Bacteroidia members which responded within 4 weeks. Acidimicrobiia, especially members of the Sva0996 marine group, colonized the degrading kelp biomass after 11 weeks. These secondary colonizers could act as opportunistic scavenger bacteria assimilating substrates exposed by early degraders. In parallel, kelp accumulation modified bacterial communities in the underlying sediment, notably favouring anaerobic taxa potentially involved in the sulfur and nitrogen cycles. Overall, this study provides insights into the bacterial degradation of algal biomass in situ, an important link in coastal trophic chains.


Assuntos
Kelp , Microbiota , Bactérias/genética , Biomassa , Ecossistema , Água do Mar
3.
Oecologia ; 196(2): 441-453, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34009471

RESUMO

As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Comportamento Alimentar , França , Noruega , Ouriços-do-Mar
4.
J Phycol ; 56(6): 1481-1492, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32557584

RESUMO

A high proportion of the kelp Laminaria hyperborea production is exported from kelp forests following seasonal storms or natural annual old blade loss. Transport of drifting kelp fragments can lead to temporary accumulations in benthic subtidal habitats. We investigated the degradation processes of L. hyperborea in a low subtidal sandy bottom ecosystem by setting up a 6-month cage experiment to simulate accumulations of kelp fragments on the seafloor. We monitored temporal changes in biomass, nutritional quality (C:N ratio), respiration, quantum efficiency of photosystem II (Fv /Fm ), bacterial colonization, and chemical defense concentrations. Biomass decomposition started after 2 weeks and followed a classic negative exponential pattern, leading to 50% degradation after 8 weeks. The degradation process seemed to reach a critical step after 11 weeks, with an increase in respiration rate and phlorotannin concentration in the tissues. These results likely reflect an increase in bacterial activity and a weakening of the kelp cell wall. After 25 weeks of degradation, only 16% of the initial biomass persisted, but the remaining large fragments looked intact. Furthermore, photosystems were still responding to light stimuli, indicating that photosynthesis persisted over time. Reproductive tissues appeared on some fragments after 20 weeks of degradation, showing a capacity to maintain the reproductive function. Our results indicate that L. hyperborea fragments degrade slowly. As they maintain major physiological functions (photosynthesis, reproduction, etc.) and accumulate on adjacent ecosystems, they may play a long-term ecological role in coastal ecosystem dynamics.


Assuntos
Kelp , Laminaria , Bactérias , Biomassa , Ecossistema
5.
Mar Environ Res ; 166: 105277, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33592375

RESUMO

Temperate kelp forests contribute significantly to marine primary productivity and fuel many benthic and pelagic food chains. A large proportion of biomass is exported from kelp forests as detritus into recipient marine ecosystems, potentially contributing to Blue Carbon sequestration. The degradation of this organic material is slow and recent research has revealed the preservation of photosynthetic functions over time. However, the physiological correlates of detrital breakdown in Laminaria spp. have not yet been studied. The warming climate threatens to reshuffle the species composition of kelp forests and perturb the dynamics of these highly productive ecosystems. The present study compares the physiological response of degrading detritus from two competing North East Atlantic species; the native Boreal Laminaria hyperborea and the thermally tolerant Boreal-Lusitanian L. ochroleuca. Detrital fragment degradation was measured by a mesocosm experiment across a gradient of spectral attenuation (a proxy for depth) to investigate the changes in physiological performance under different environmental conditions. Degradation of fragments was quantified over 108 days by measuring the biomass, production and respiration (by respirometry) and efficiency of Photosystem II (by PAM fluorometry). Data indicated that whilst degrading, the photosynthetic performance of the species responded differently to simulated depths, but fragments of both species continued to produce oxygen for up to 56 days and sustained positive net primary production. This study reveals the potential for ostensibly detrital kelp to contribute to Blue Carbon fixation through sustained primary production which should be factored into Blue Carbon management. Furthermore, the physiological response of kelp detritus is likely dependent upon the range of habitats to which it is exported. In the context of climate change, shifts in species composition of kelp forests and their detritus are likely to have wide-reaching effects upon the cycling of organic matter in benthic ecosystems.


Assuntos
Kelp , Ciclo do Carbono , Ecossistema , Cadeia Alimentar , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA