Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Surg ; 278(4): 519-529, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389480

RESUMO

OBJECTIVE AND BACKGROUND: Propranolol, a nonselective beta-receptor blocker, improves outcomes of severely burned patients. While the clinical and physiological benefits of beta-blockade are well characterized, the underlying metabolic mechanisms are less well defined. We hypothesized that propranolol improves outcomes after burn injury by profoundly modulating metabolic pathways. METHODS: In this phase II randomized controlled trial, patients with burns ≥20% of total body surface area were randomly assigned to control or propranolol (dose given to decrease heart rate <100 bpm). Outcomes included clinical markers, inflammatory and lipidomic profiles, untargeted metabolomics, and molecular pathways. RESULTS: Fifty-two severely burned patients were enrolled in this trial (propranolol, n=23 and controls, n=29). There were no significant differences in demographics or injury severity between groups. Metabolomic pathway analyses of the adipose tissue showed that propranolol substantially alters several essential metabolic pathways involved in energy and nucleotide metabolism, as well as catecholamine degradation ( P <0.05). Lipidomic analysis revealed that propranolol-treated patients had lower levels of proinflammatory palmitic acid ( P <0.05) and saturated fatty acids ( P <0.05) with an increased ratio of polyunsaturated fatty acids ( P <0.05), thus shifting the lipidomic profile towards an anti-inflammatory phenotype after burn ( P <0.05). These metabolic effects were mediated by decreased activation of hormone-sensitive lipase at serine 660 ( P <0.05) and significantly reduced endoplasmic reticulum stress by decreasing phospho-JNK ( P <0.05). CONCLUSION: Propranolol's ability to mitigate pathophysiological changes to essential metabolic pathways results in significantly improved stress responses.


Assuntos
Queimaduras , Propranolol , Humanos , Propranolol/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Metabolômica , Tecido Adiposo
2.
Ann Surg ; 278(6): e1267-e1276, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057618

RESUMO

OBJECTIVE: We conducted a large-scale investigation of the systemic and adipose tissue-specific alterations in a clinical population of burn patients to identify factors that may influence hypermetabolism. BACKGROUND: Previous research has identified chronic disturbances in adipose tissue inflammation, lipolysis, and browning, which may drive the perpetuation of hypermetabolism following the severe adrenergic stress of a burn injury. Given that adipose tissue is thought to be a central node in the regulation of systemic metabolism, we believe that systematically delineating the pathologic role of adipose tissue postburn, will lead to the identification of novel interventions to mitigate morbidity and mortality from severe burns. METHODS: This was a single-institution cohort study, which obtained plasma and subcutaneous adipose tissue samples from severely burn adult patients over various time points during acute hospitalization. Whole-body clinical, metabolic, and inflammatory mediators were assessed in plasma, while genetic analyses through RT-qPCR and single-nuclei RNA sequencing were conducted in adipose tissue. RESULTS: Systemic inflammation and adrenergic stress increase IL-6 signaling, lipolysis, browning, and adipokine dysfunction in the adipose tissue of adult burn patients, which may further propagate the long-term hypermetabolic response. Moreover, using single-nuclei RNA sequencing, we provide the first comprehensive characterization of alterations in the adipose tissue microenvironment occurring at acute and chronic stages postburn. CONCLUSION: We provide novel insight toward the effect of burns on adipokine release, inflammatory signaling pathways, and adipose heterogeneity over the trajectory of acute and chronic stages.


Assuntos
Queimaduras , RNA , Adulto , Humanos , Adipocinas , Estudos de Coortes , Tecido Adiposo , Queimaduras/metabolismo , Inflamação/metabolismo , Adrenérgicos
3.
Shock ; 61(6): 877-884, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661185

RESUMO

ABSTRACT: Hypermetabolic reprogramming triggered by thermal injury causes substantial morbidity and mortality. Despite the therapeutic potential of targeting this response, the underlying mechanisms remain poorly understood. Interestingly, protein S-acylation is a reversible posttranslational modification induced by metabolic alterations via DHHC acyltransferases. While this modification aids in the regulation of cellular functions, deregulated S-acylation contributes to various diseases by altering protein structure, stability, and localization. However, whether and how S-acylation may impact morbidity and mortality during postburn hypermetabolism is unknown. In this study, we discovered that alterations in the acyl proteome play a key role in mediating adverse outcomes that occur after burn injury. Using a murine model, we show that burn injury induces profound changes in the expression of various DHHC isoforms in metabolic organs central to regulating postburn hypermetabolism, the adipose tissue, and liver. This was accompanied by increased levels of S-acylated proteins in several pathways involved in mediating the adverse hypermetabolic response, including ER stress, lipolysis, and browning. In fact, similar results were also observed in adipose tissue from severely burned patients, as reflected by increased S-acylation of ERK1/2, eIF2a, ATGL, FGF21, and UCP1 relative to nonburn controls. Importantly, pharmacologically targeting this posttranslational modification using a nonselective DHHC inhibitor effectively attenuated burn-induced ER stress, lipolysis, and browning induction in an ex vivo explant model. Together, these findings suggest that S-acylation may facilitate the protein activation profile that drives burn-induced hypermetabolism and that targeting it could potentially be an effective strategy to restore metabolic function and improve outcomes after injury.


Assuntos
Queimaduras , Proteoma , Animais , Queimaduras/metabolismo , Camundongos , Humanos , Proteoma/metabolismo , Masculino , Acilação , Camundongos Endogâmicos C57BL , Feminino , Fígado/metabolismo , Estresse do Retículo Endoplasmático
4.
Cell Rep ; 43(1): 113584, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117653

RESUMO

Severe burns induce a chronic hypermetabolic state that persists well past wound closure, indicating that additional internal mechanisms must be involved. Adipose tissue is suggested to be a central regulator in perpetuating hypermetabolism, although this has not been directly tested. Here, we show that thermogenic adipose tissues are activated in parallel to increases in hypermetabolism independent of cold stress. Using an adipose tissue transplantation model, we discover that burn-derived subcutaneous white adipose tissue alone is sufficient to invoke a hypermetabolic response in a healthy recipient mouse. Concomitantly, transplantation of healthy adipose tissue alleviates metabolic dysfunction in a burn recipient. We further show that the nicotinic acetylcholine receptor signaling pathway may mediate an immune-adipose crosstalk to regulate adipose tissue remodeling post-injury. Targeting this pathway could lead to innovative therapeutic interventions to counteract hypermetabolic pathologies.


Assuntos
Queimaduras , Gordura Subcutânea , Animais , Camundongos , Gordura Subcutânea/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Metabolismo Energético/fisiologia , Queimaduras/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo
5.
iScience ; 26(10): 107719, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674984

RESUMO

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

6.
Front Med (Lausanne) ; 8: 637885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490283

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect a broad range of human tissues by using the host receptor angiotensin-converting enzyme 2 (ACE2). Individuals with comorbidities associated with severe COVID-19 display higher levels of ACE2 in the lungs compared to those without comorbidities, and conditions such as cell stress, elevated glucose levels and hypoxia may also increase the expression of ACE2. Here, we showed that patients with Barrett's esophagus (BE) have a higher expression of ACE2 in BE tissues compared to normal squamous esophagus, and that the lower pH associated with BE may drive this increase in expression. Human primary monocytes cultured in reduced pH displayed increased ACE2 expression and higher viral load upon SARS-CoV-2 infection. We also showed in two independent cohorts of 1,357 COVID-19 patients that previous use of proton pump inhibitors is associated with 2- to 3-fold higher risk of death compared to those not using the drugs. Our work suggests that pH has a great influence on SARS-CoV-2 Infection and COVID-19 severity.

7.
Immunobiology ; 225(3): 151935, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32201093

RESUMO

Macrophages are essential components of the immune system. Macrophages can be derived from the bone marrow of mice with either recombinant M-CSF or L929 supernatant. Recent literature considers recombinant M-CSF- and L929-derived macrophages as equals, even though L929-derived macrophages are exposed to other substances secreted in the L929 supernatant, and not only M-CSF. Thus, we decided to perform a comparative analysis of both inflammatory and metabolic profiles of macrophages differentiated under the aforementioned conditions, which is relevant for standardization and interpretation of in vitro studies. We observed that, when treated with LPS, L929macs secrete lower levels of proinflammatory cytokines (TNF-α, IL-6, IL12) and present higher glycolysis and oxygen consumption when compared with M-CSFmacs. L929macs also have increased mitochondrial mass, with higher percentage of dysfunctional mitochondria. This sort of information can help direct further studies towards a more specific approach for macrophage generation.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Metaboloma , Metabolômica , Animais , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Metabolismo Energético , Mediadores da Inflamação/metabolismo , Metabolômica/métodos , Camundongos
8.
Free Radic Biol Med ; 145: 61-66, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525456

RESUMO

Over the past years, systemic derived cues that regulate cellular metabolism have been implicated in the regulation of immune responses. Ghrelin is an orexigenic hormone produced by enteroendocrine cells in the gastric mucosa with known immunoregulatory roles. The mechanism behind the function of ghrelin in immune cells, such as macrophages, is still poorly understood. Here, we explored the hypothesis that ghrelin leads to alterations in macrophage metabolism thus modulating macrophage function. We demonstrated that ghrelin exerts an immunomodulatory effect over LPS-activated peritoneal macrophages, as evidenced by inhibition of TNF-α and IL-1ß secretion and increased IL-12 production. Concomitantly, ghrelin increased mitochondrial membrane potential and increased respiratory rate. In agreement, ghrelin prevented LPS-induced ultrastructural damage in the mitochondria. Ghrelin also blunted LPS-induced glycolysis. In LPS-activated macrophages, glucose deprivation did not affect ghrelin-induced IL-12 secretion, whereas the inhibition of pyruvate transport and mitochondria-derived ATP abolished ghrelin-induced IL-12 secretion, indicating a dependence on mitochondrial function. Ghrelin pre-treatment of metabolic activated macrophages inhibited the secretion of TNF-α and enhanced IL-12 levels. Moreover, ghrelin effects on IL-12, and not on TNF-α, are dependent on mitochondria elongation, since ghrelin did not enhance IL-12 secretion in metabolic activated mitofusin-2 deficient macrophages. Thus, ghrelin affects macrophage mitochondrial metabolism and the subsequent macrophage function.


Assuntos
Grelina/farmacologia , Interleucina-12/genética , Interleucina-1beta/genética , Macrófagos Peritoneais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Trifosfato de Adenosina/genética , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Grelina/química , Glicólise/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Óxido Nítrico/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA