Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 180: 107422, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33691195

RESUMO

N-methyl D-aspartate (NMDA) administered at subtoxic dose plays a protective role against neuronal excitotoxicity, a mechanism described as preconditioning. Since the activation of adenosinergic receptors influences the achievement of NMDA preconditioning in the hippocampus, we evaluated the potential functional interplay between adenosine A1 and A2A receptors (A1R and A2AR) activities and NMDA preconditioning. Adult male Swiss mice received saline (NaCl 0.9 g%, i.p.) or a nonconvulsant dose of NMDA (75 mg/kg, i.p.) and 24 h later they were treated with the one of the ligands: A1R agonist (CCPA, 0.2 mg/kg, i.p.) or antagonist (DPCPX, 3 mg/kg, i.p.), A2AR agonist (CGS21680, 0.05 mg/kg, i.p.) or antagonist (ZM241385, 0.1 mg/kg, i.p.) and subjected to contextual fear conditioning task. Binding properties and content of A2AR and glutamate uptake were assessed in the hippocampus of mice subjected to NMDA preconditioning. Treatment with CGS21680 increased the time of freezing during the exposure of animals to the new environment. NMDA preconditioning did not affect the freezing time of mice per se, but it prevented the response observed after the activation of A2AR. Furthermore, the activation of A2AR by CGS21680 after the preconditioning blocked the increase of glutamate uptake induced by NMDA preconditioning. The immunodetection of A2AR in total hippocampal homogenates showed no significant differences evoked by NMDA preconditioning and did not alter A2AR maximum binding for the selective ligand [3H]CGS21680. These results demonstrate changes in A2AR functionality in mice following NMDA preconditioning.


Assuntos
Condicionamento Clássico/fisiologia , Medo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , N-Metilaspartato/farmacologia
2.
Neuroscience ; 370: 62-80, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729064

RESUMO

Posttraumatic stress and drug use disorders may stem from aberrant memory formation. As the endocannabinoid (eCB) system has a pivotal role in emotional memory processing and related synaptic plasticity, here we seek to review and discuss accumulating evidence on how and where in the brain interventions targeting the eCB system would attenuate outcomes associated with traumatic events and/or drug addiction through memory extinction facilitation or reconsolidation disruption. Currently available data from mouse, rat, monkey and healthy human studies investigating the effects of cannabinoid drugs on extinction and reconsolidation of aversive memories are more consistent than those related to rewarding drug-associated memories. Interventions able to attenuate aversive memories by extinction facilitation or reconsolidation disruption have boosted the anandamide-induced activation of cannabinoid type-1 (CB1) receptors. A still limited number of studies report that CB1 receptor activation could also be effective in facilitating the extinction or disrupting the reconsolidation of rewarding drug-associated memories. The reinstatement of extinguished drug memories (relapse) is reduced by CB1 receptor antagonism. The cannabidiol has shown to be effective in any of the aforementioned cases, albeit its mechanism of action is not fully understood. Brain areas in which cannabinoid drugs induce these effects include the prefrontal cortex, amygdala, hippocampus, and/or nucleus accumbens. The potential role of 2-arachidonoylglycerol (2-AG) and cannabinoid type-2 (CB2) receptors in emotional memory extinction and reconsolidation is currently under investigation. Overall, preclinical data support a closer look into certain cannabinoid drugs owing to their safety and potential therapeutic value against stress-related and drug use disorders.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/farmacologia , Extinção Psicológica/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Recompensa , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Aprendizagem da Esquiva/fisiologia , Extinção Psicológica/fisiologia , Humanos , Consolidação da Memória/fisiologia , Receptores de Canabinoides/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo
3.
Epilepsy Res ; 127: 160-167, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27608434

RESUMO

The potential efficacy of cannabinoid receptor ligands for the treatment of epilepsy remains controversial; cannabis components that act via cannabinoid type 1 (CB1) receptors produce anticonvulsant effects in animal models despite treatment with the CB receptor agonist reliably inducing convulsions in various species. Moreover, the potential role of cannabinoid receptor type 2 (CB2) to modulate seizures remains under-investigated. This study assessed the effects of the selective CB2 receptor agonist, AM1241, on pentylenetetrazole (PTZ)-induced seizures in rats. A stereotactically placed guide cannula was surgically implanted into the right lateral ventricle in adult Wistar rats which, 5-6days later, received an acute intracerebroventricular (i.c.v.) microinfusion of AM1241 (0.01, 1 or 10µg/2µl or vehicle) 5min before intraperitoneal (i.p.) injection of PTZ (70mg/kg). Rats were observed for 30min and the seizure severity behavior measured using a modified Racine's scale. Additional groups of rats were pretreated with a single low dose of the selective CB2 receptor antagonist, AM630 (dose 1mg/kg; i.p.), or vehicle, 30min prior to i.c.v. microinfusion of AM1241 (1µg/2µl). AM1241 administration significantly increased tonic-clonic seizure incidence and severity while also decreasing the onset of generalized seizures (AM1241 1 and 10µg/2µl). Pretreatment with AM630 prevented the proconvulsant effects of AM1241. This study shows, for the first time, that selective activation of CB2 receptors can increase generalized seizure susceptibility and suggests that pathological hyperexcitability phenomena can be differentially regulated by targeting CB1 and CB2 receptors.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Convulsivantes/farmacologia , Pentilenotetrazol/farmacologia , Receptor CB2 de Canabinoide/agonistas , Convulsões/induzido quimicamente , Animais , Canabinoides/farmacologia , Cateteres de Demora , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Injeções Intraperitoneais , Masculino , Microinjeções , Ratos Wistar , Receptor CB2 de Canabinoide/metabolismo , Convulsões/metabolismo , Convulsões/mortalidade , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA