RESUMO
One of the most important diseases that affect sweet orange orchards in Brazil is the Citrus Black Spot that is caused by the fungus Guignardia citricarpa. This disease causes irreparable losses due to the premature falling of fruit, as well as its severe effects on the epidermis of ripe fruit that renders them unacceptable at the fresh fruit markets. Despite the fact that the fungus and the disease are well studied, little is known about the genetic diversity and the structure of the fungi populations in Brazilian orchards. The objective of this work was study the genetic diversity and population differentiation of G. citricarpa associated with four sweet orange varieties in two geographic locations using DNA sequence of ITS1-5.8S-ITS2 region from fungi isolates. We observed that different populations are closely related and present little genetic structure according to varieties and geographic places with the highest genetic diversity distributed among isolates of the same populations. The same haplotypes were sampled in different populations from the same and different orange varieties and from similar and different origins. If new and pathogenic fungi would become resistant to fungicides, the observed genetic structure could rapidly spread this new form from one population to others.
Assuntos
Ascomicetos/genética , Citrus/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Brasil , Análise de Sequência de DNARESUMO
Among the citrus plants, "Tahiti" acid lime is known as a host of G. mangiferae fungi. This species is considered endophytic for citrus plants and is easily isolated from asymptomatic fruits and leaves. G. mangiferae is genetically related and sometimes confused with G. citricarpa which causes Citrus Black Spot (CBS). "Tahiti" acid lime is one of the few species that means to be resistant to this disease because it does not present symptoms. Despite the fact that it is commonly found in citric plants, little is known about the populations of G. mangiferae associated with these plants. Hence, the objective of this work was to gain insights about the genetic diversity of the G. mangiferae populations that colonize "Tahiti" acid limes by sequencing cistron ITS1-5.8S-ITS2. It was verified that "Tahiti" acid lime plants are hosts of G. mangiferae and also of G. citricarpa, without presenting symptoms of CBS. Populations of G. mangiferae present low-to-moderate genetic diversity and show little-to-moderate levels of population differentiation. As gene flow was detected among the studied populations and they share haplotypes, it is possible that all populations, from citrus plants and also from the other known hosts of this fungus, belong to one great panmictic population.
Assuntos
Ascomicetos/genética , Citrus/microbiologia , Variação Genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , HaplótiposRESUMO
The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have been extensively studied with respect to host preferences, thermal requirements, and responses to visual and chemical volatile stimuli. However, development of the psyllid in relation to the ontogeny of immature citrus flush growth has not been clearly defined or illustrated. Such information is important for determining the timing and frequency of measures used to minimize populations of the psyllid in orchards and spread of HLB. Our objective was to study how flush ontogeny influences the biotic potential of the psyllid. We divided citrus flush growth into six stages within four developmental phases: emergence (V1), development (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri oviposition and nymph development were assessed on all flush stages in a temperature controlled room, and in a screen-house in which ambient temperatures varied. Our results show that biotic potential of Diaphorina citri is not a matter of the size or the age of the flushes (days after budbreak), but the developmental stage within its ontogeny. Females laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition, nymph survival and development, and adult emergence, which showed evidence of protandry. Flush shoots at emerging and developmental phases should be the focus of any chemical or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree from Liberibacter infection and to minimize HLB dissemination.