Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2011): 20231345, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964526

RESUMO

There is widespread concern that cessation of grazing in historically grazed ecosystems is causing biotic homogenization and biodiversity loss. We used 12 montane grassland sites along an 800 km north-south gradient across the UK, to test whether cessation of grazing affects local α- and ß-diversity of below-ground food webs. We show cessation of grazing leads to strongly decreased α-diversity of most groups of soil microbes and fauna, particularly of relatively rare taxa. By contrast, the ß-diversity varied between groups of soil organisms. While most soil microbial communities exhibited increased homogenization after cessation of grazing, we observed decreased homogenization for soil fauna after cessation of grazing. Overall, our results indicate that exclusion of domesticated herbivores from historically grazed montane grasslands has far-ranging negative consequences for diversity of below-ground food webs. This underscores the importance of grazers for maintaining the diversity of below-ground communities, which play a central role in ecosystem functioning.


Assuntos
Microbiota , Solo , Cadeia Alimentar , Pradaria , Biodiversidade
2.
Proc Biol Sci ; 288(1947): 20210212, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726596

RESUMO

While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.


Assuntos
Ecossistema , Polinização , Agricultura , Animais , Abelhas , Biodiversidade , Produtos Agrícolas , Insetos
3.
Ecol Appl ; 31(8): e02445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448315

RESUMO

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of "pollination deficits," where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared "pollinator dependence" across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.


Assuntos
Malus , Polinização , Animais , Abelhas , Produtos Agrícolas , Frutas , Insetos
4.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808477

RESUMO

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Europa (Continente) , Flores , Nova Zelândia , América do Norte , Controle de Pragas
5.
Ecol Lett ; 20(11): 1427-1436, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28901046

RESUMO

Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced.


Assuntos
Agroquímicos/efeitos adversos , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Controle Biológico de Vetores , Produtos Agrícolas/efeitos dos fármacos , Ecologia , Europa (Continente)
6.
Mol Ecol ; 24(17): 4556-69, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25966360

RESUMO

Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free-living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co-amplification of metazoan-associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over-represented, while those of most amoebae and flagellates were under-represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free-living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co-extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free-living soil protist communities.


Assuntos
Amoeba/genética , Cercozoários/genética , Cilióforos/genética , Código de Barras de DNA Taxonômico , Kinetoplastida/genética , Solo/parasitologia , Biodiversidade , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia
7.
Environ Microbiome ; 19(1): 21, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581032

RESUMO

BACKGROUND: The phyllosphere microbiome is crucial for plant health and ecosystem functioning. While host species play a determining role in shaping the phyllosphere microbiome, host trees of the same species that are subjected to different environmental conditions can still exhibit large degrees of variation in their microbiome diversity and composition. Whether these intra-specific variations in phyllosphere microbiome diversity and composition can be observed over the broader expanse of forest landscapes remains unclear. In this study, we aim to assess the variation in the top canopy phyllosphere bacterial communities between and within host tree species in the temperate European forests, focusing on Fagus sylvatica (European beech) and Picea abies (Norway spruce). RESULTS: We profiled the bacterial diversity, composition, driving factors, and discriminant taxa in the top canopy phyllosphere of 211 trees in two temperate forests, Veluwe National Parks, the Netherlands and Bavarian Forest National Park, Germany. We found the bacterial communities were primarily shaped by host species, and large variation existed within beech and spruce. While we showed that there was a core microbiome in all tree species examined, community composition varied with elevation, tree diameter at breast height, and leaf-specific traits (e.g., chlorophyll and P content). These driving factors of bacterial community composition also correlated with the relative abundance of specific bacterial families. CONCLUSIONS: While our results underscored the importance of host species, we demonstrated a substantial range of variation in phyllosphere bacterial diversity and composition within a host species. Drivers of these variations have implications at both the individual host tree level, where the bacterial communities differed based on tree traits, and at the broader forest landscape level, where drivers like certain highly plastic leaf traits can potentially link forest canopy bacterial community variations to forest ecosystem processes. We eventually showed close associations between forest canopy phyllosphere bacterial communities and host trees exist, and the consistent patterns emerging from these associations are critical for host plant functioning.

8.
BMC Plant Biol ; 12: 3, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22217252

RESUMO

BACKGROUND: Previous studies on the reproductive biology of ferns showed that mating strategies vary among species, and that polyploid species often show higher capacity for self-fertilization than diploid species. However, the amount of intraspecific variation in mating strategy and selfing capacity has only been assessed for a few species. Yet, such variation may have important consequences during colonization, as the establishment of any selfing genotypes may be favoured after long-distance dispersal (an idea known as Baker's law). RESULTS: We examined intra-and interspecific variation in potential for self-fertilization among four rare fern species, of which two were diploids and two were tetraploids: Asplenium scolopendrium (2n), Asplenium trichomanes subsp. quadrivalens (4n), Polystichum setiferum (2n) and Polystichum aculeatum (4n). Sporophyte production was tested at different levels of inbreeding, by culturing gametophytes in isolation, as well as in paired cultures with a genetically different gametophyte. We tested gametophytes derived from various genetically different sporophytes from populations in a recently planted forest colonized through long-distance dispersal (Kuinderbos, the Netherlands), as well as from older, less disjunct populations.Sporophyte production in isolation was high for Kuinderbos genotypes of all four species. Selfing capacity did not differ significantly between diploids and polyploids, nor between species in general. Rather selfing capacity differed between genotypes within species. Intraspecific variation in mating system was found in all four species. In two species one genotype from the Kuinderbos showed enhanced sporophyte production in paired cultures. For the other species, including a renowned out crosser, selfing capacity was consistently high. CONCLUSIONS: Our results for four different species suggest that intraspecific variation in mating system may be common, at least among temperate calcicole ferns, and that genotypes with high selfing capacity may be present among polyploid as well as diploid ferns. The surprisingly high selfing capacity of all genotypes obtained from the Kuinderbos populations might be due to the isolated position of these populations. These populations may have established through single-spore colonization, which is only possible for genotypes capable of self-fertilization. Our results therewith support the idea that selection for selfing genotypes may occur during long-distance colonization, even in normally outcrossing, diploid ferns.


Assuntos
Gleiquênias/fisiologia , Poliploidia , Autofertilização , DNA de Plantas/genética , Gleiquênias/genética , Genótipo , Células Germinativas Vegetais/fisiologia , Modelos Logísticos , Reprodução , Especificidade da Espécie
9.
Ann Bot ; 109(5): 965-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323427

RESUMO

BACKGROUND AND AIMS: Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. METHODS: Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. KEY RESULTS: A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. CONCLUSIONS: The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.


Assuntos
Gleiquênias/fisiologia , Fluxo Gênico/genética , Variação Genética/genética , Genética Populacional , Dispersão de Sementes/fisiologia , Esporos/fisiologia , Diploide , Ecossistema , Gleiquênias/genética , Genótipo , Geografia , Endogamia , Repetições de Microssatélites/genética , Países Baixos , Poliploidia , Dinâmica Populacional , Autofertilização , Esporos/genética
10.
Am J Bot ; 99(8): 1375-87, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22859655

RESUMO

PREMISE OF THE STUDY: Current environmental changes may affect the dynamics and viability of plant populations. This environmental sensitivity may differ between species of different ploidy level because polyploidization can influence life history traits. We compared the demography and climatic sensitivity of two closely related ferns: the tetraploid Polystichum aculeatum and one of its diploid parents, Polystichum setiferum. METHODS: Matrix models were used to assess the effects of life history variation on population dynamics under varying winter conditions. We analyzed the contributions of all key aspects of the fern life cycle to population growth. Our study is the first to also include the gametophyte generation. KEY RESULTS: Projected population growth rate (λ) was much higher for the tetraploid P. aculeatum (1.516) than for P. setiferum (1.071) under normal winter conditions. During a year with harsh winter conditions, population growth of P. aculeatum was strongly reduced. This finding contradicts our expectation that the winter-hardy fronds of this species would allow high survival of harsh winters. Differences in λ between species and between years with different winter conditions were mostly caused by variation in gametophyte-related recruitment rates, a finding that shows the importance of including gametophytes in fern demographic studies. CONCLUSIONS: Our results indicate that populations of closely related ferns can show large differences in population performance, mainly related to recruitment rates and frond phenology, and that these differences may depend greatly on climatic conditions. Our findings provide a first indication that (allo)polyploidization in ferns can have a significant effect on population dynamics.


Assuntos
Poliploidia , Polystichum/genética , Estresse Fisiológico , Sobrevivência Celular , Clima , Mudança Climática , Código de Barras de DNA Taxonômico , Demografia , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/fisiologia , Germinação , Endogamia , Modelos Teóricos , Fenótipo , Polystichum/crescimento & desenvolvimento , Polystichum/fisiologia , Reprodução , Estações do Ano
11.
Am J Bot ; 98(11): e319-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22012927

RESUMO

PREMISE OF THE STUDY: Studies on the biogeography and population genetics of the widespread European rock ferns Asplenium scolopendrium, A. trichomanessubsp. quadrivalens, Polystichum setiferum, and P. aculeatumwould potentially yield interesting new insights into the colonization capacities of ferns. Markers with sufficient resolution for detailed genetic studies are, however, not yet available. METHODS AND RESULTS: Using genome screening with intersimple sequence repeat (ISSR) primers, a total of 16 different microsatellite markers were isolated and characterized for the four species. Some of these markers could be exchanged within each congeneric pair. CONCLUSIONS: The developed primer sets will be very useful for analyses of the biogeography and population genetics of some widespread calcicole ferns. The observed cross-amplification rates suggest a high potential for application on additional species from the same genera.


Assuntos
Gleiquênias/genética , Amplificação de Genes/genética , Repetições de Microssatélites , Polimorfismo Genético , Alelos , Primers do DNA , DNA de Plantas , Europa (Continente) , Genética Populacional , Filogeografia , Especificidade da Espécie
12.
Environ Int ; 154: 106551, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33857708

RESUMO

Air is a major conduit for the dispersal of organisms at the local and the global scale. Most research has focused on the dispersal of plants, vertebrates and human disease agents. However, the air represents a key dispersal medium also for bacteria, fungi and protists. Many of those represent potential pathogens of animals and plants and have until now gone largely unrecorded. Here we studied the turnover in composition of the entire aerobiome, the collective diversity of airborne microorganisms. For that we performed daily analyses of all prokaryotes and eukaryotes (including plants) using multi-marker high-throughput sequencing for a total of three weeks. We linked the resulting communities to local weather conditions, to assess determinants of aerobiome composition and distribution. We observed hundreds of microbial taxa, mostly belonging to spore-forming organisms including fungi, but also protists. Additionally, we detected many potential human- and plant-pathogens. Community composition fluctuated on a daily basis and was linked to concurrent weather conditions, particularly air pressure and temperature. Using network analyses, we identified taxonomically diverse groups of organisms with correlated temporal dynamics. In part, this was due to co-variation with environmental conditions, while we could also detect specific host-parasite interactions. This study provides the first full inventory of the aerobiome and identifies putative drivers of its dynamics in terms of taxon composition. This knowledge can help develop early warning systems against pathogens and improve our understanding of microbial dispersal.


Assuntos
Microbiota , Alérgenos , Bactérias/genética , Fungos/genética , Humanos , Microbiota/genética , Plantas
13.
Environ Int ; 146: 106262, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221595

RESUMO

Protists dominate eukaryotic diversity and play key functional roles in all ecosystems, particularly by catalyzing carbon and nutrient cycling. To date, however, a comparative analysis of their taxonomic and functional diversity that compares the major ecosystems on Earth (soil, freshwater and marine systems) is missing. Here, we present a comparison of protist diversity based on standardized high throughput 18S rRNA gene sequencing of soil, freshwater and marine environmental DNA. Soil and freshwater protist communities were more similar to each other than to marine protist communities, with virtually no overlap of Operational Taxonomic Units (OTUs) between terrestrial and marine habitats. Soil protists showed higher γ diversity than aquatic samples. Differences in taxonomic composition of the communities led to changes in a functional diversity among ecosystems, as expressed in relative abundance of consumers, phototrophs and parasites. Phototrophs (eukaryotic algae) dominated freshwater systems (49% of the sequences) and consumers soil and marine ecosystems (59% and 48%, respectively). The individual functional groups were composed of ecosystem- specific taxonomic groups. Parasites were equally common in all ecosystems, yet, terrestrial systems hosted more OTUs assigned to parasites of macro-organisms while aquatic systems contained mostly microbial parasitoids. Together, we show biogeographic patterns of protist diversity across major ecosystems on Earth, preparing the way for more focused studies that will help understanding the multiple roles of protists in the biosphere.


Assuntos
Ecossistema , Solo , Biodiversidade , Eucariotos/genética , Água Doce , Filogenia
14.
Langmuir ; 26(22): 17513-9, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20932041

RESUMO

Responsive polymeric brushes of poly(methacrylic acid) (PMAA) were grafted from silicon surfaces using controlled surface-initiated atom-transfer radical polymerization (SI-ATRP). The growth kinetics of PMAA was investigated with respect to the composition of the ATRP medium by grafting the polymer in mixtures of water and methanol with different ratios. The dissociation behavior of the polymer layers was characterized by FTIR titration after incubating the polymer-grafted substrates in PBS buffer solutions with different pH values. PMAA layers show a strong pH-dependent behavior with an effective pK(a) of the bulk polymer brush of 6.5 ± 0.2, which is independent of the polymer brush thickness and methanol content of the ATRP grafting medium. The pH-induced swelling and collapse of the grafted polymer layers were quantified in real time by in situ ellipsometry in liquid environment. Switching between polymer conformations at pH values of 4 and 8 is rapid and reversible, and it is characterized by swelling factors (maximum thickness/minimum thickness) that increase with decreasing the methanol content of the SI-ATRP medium.


Assuntos
Ácidos Polimetacrílicos/química , Absorção , Técnicas Biossensoriais , Radicais Livres/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia Fotoeletrônica , Polimerização , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
15.
Ann Bot ; 106(4): 583-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20682575

RESUMO

BACKGROUND AND AIMS: Human-mediated environmental change is increasing selection pressure for the capacity in plants to colonize new areas. Habitat fragmentation combined with climate change, in general, forces species to colonize areas over longer distances. Mating systems and genetic load are important determinants of the establishment and long-term survival of new populations. Here, the mating system of Asplenium scolopendrium, a diploid homosporous fern species, is examined in relation to colonization processes. METHODS: A common environment experiment was conducted with 13 pairs of sporophytes, each from a different site. Together they constitute at least nine distinct genotypes, representing an estimated approx. 95 % of the non-private intraspecific genetic variation in Europe. Sporophyte production was recorded for gametophytes derived from each parent sporophyte. Gametophytes were grown in vitro in three different ways: (I) in isolation, (II) with a gametophyte from a different sporophyte within the same site or (III) with a partner from a different site. KEY RESULTS: Sporophyte production was highest in among-site crosses (III), intermediate in within-site crosses (II) and was lowest in isolated gametophytes (I), strongly indicating inbreeding depression. However, intragametophytic selfing was observed in most of the genotypes tested (eight out of nine). CONCLUSIONS: The results imply a mixed mating system in A. scolopendrium, with outcrossing when possible and occasional selfing when needed. Occasional intragametophytic selfing facilitates the successful colonization of new sites from a single spore. The resulting sporophyte, which will be completely homozygous, will shed large amounts of spores over time. Each year this creates a bed of gametophytes in the vicinity of the parent. Any unrelated spore which arrives is then selectively favoured to reproduce and contribute its genes to the new population. Thus, while selfing facilitates initial colonization success, inbreeding depression promotes genetically diverse populations through outcrossing. The results provide further evidence against the overly simple dichotomous distinction of fern species as either selfing or outcrossing.


Assuntos
Gleiquênias/fisiologia , Gleiquênias/crescimento & desenvolvimento , Células Germinativas Vegetais/fisiologia , Endogamia , Reprodução/fisiologia
16.
Sci Rep ; 10(1): 20316, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230164

RESUMO

Oak wood was highly appreciated and widely used for construction in past centuries. As population sizes expanded in some regions of Europe, local forests were depleted of high-quality timber. Therefore, regions of soaring economies were importing timber initially from the European market and eventually from other continents. Origin of archaeological or historical timber is usually identified by means of dendroprovenancing, i.e. statistical matching of tree-ring-width (TRW) series of timber of unknown origin with TRW reference datasets. However, this method has pitfalls and limitations and therefore alternative techniques are needed. Here, we used three different DNA analysis methods to investigate the potential of using ancient (a)DNA, extracted from oak timber derived from historical buildings and shipwrecks from a variety of countries. All the material had also been analysed dendrochronologically, so its dating and provenance is demonstrated. We included heartwood samples in this analysis, for which DNA extraction is especially challenging as it contains chemicals that inhibit DNA amplification. We succeeded in amplifying DNA for at least one marker from 56% of samples (including heartwood samples), yielding crucial information that allowed us to identify the potential source area of centuries old timber buildings in Latvia and Denmark and of 750-year-old shipwreck material from Germany. Our results prove the strong potential of DNA analyses for identifying timber origin to the regional scale, but by combining these with the dendrochronological results, we can control the exactitude of the aDNA approach and demonstrate a more nuanced examination of the timber sources for these historic structures.


Assuntos
DNA de Plantas/genética , DNA de Plantas/história , Florestas , Quercus/genética , Árvores/genética , Madeira/genética , Madeira/história , Arqueologia/métodos , DNA de Plantas/isolamento & purificação , Europa (Continente) , Haplótipos , História do Século XV , História do Século XVII , História Medieval , Técnicas de Amplificação de Ácido Nucleico/métodos
17.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
18.
Eur J Intern Med ; 18(1): 39-43, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17223041

RESUMO

BACKGROUND: While it has been established that even limited weight loss (5-10%) improves obesity-associated cardiovascular risk factors, it is not known if considerable weight loss following laparoscopic adjustable silicone gastric banding (LASGB) results in a cardiovascular risk profile that is comparable, worse, or even better than that of matched control subjects. METHODS: Cardiovascular risk factors were compared in three groups of 24 women each: an index group that had lost considerable weight following LASGB for morbid obesity (BMI>40 kg/m(2)), a control group with the same BMI that the index group achieved after weight loss, and a pre-weight loss group of women with a BMI above 40 kg/m(2). Anthropometric measures, fasting serum glucose, insulin, lipids, C-reactive protein, and homocysteine levels were determined and insulin sensitivity was estimated using a homeostasis model assessment index (HOMA-IR). RESULTS: After bariatric surgery, the index group had a BMI of 32.0+/-0.8 kg/m(2). This resulted in a significantly better cardiovascular risk profile than that of the pre-weight loss group (BMI 42.8+/-0.6 kg/m(2)). Unexpectedly, after weight loss, the index group had significantly lower systolic blood pressure, fasting serum insulin, and HOMA-IR than the BMI-matched (32.8+/-0.9 kg/m(2)) control group. Although not significant, diastolic blood pressure, LDL-cholesterol, and CRP levels were also lower. CONCLUSION: Considerable weight loss following bariatric surgery leads to a greater improvement in cardiovascular risk factors than might be expected from the weight loss.

19.
Cancer Res ; 49(11): 2862-7, 1989 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-2720647

RESUMO

Female LOU/M rats, bearing either a cisplatin (cisDDP)-sensitive or -resistant IgM immunocytoma, were sacrificed at 1 or 24 h after cisDDP administration (i.v., 10 mg/kg of body weight). Platinum levels, determined with atomic absorption spectroscopy, were in the order kidney much greater than liver greater than tumor greater than spleen in the 1-h samples. In the 24-h samples, more platinum was found in spleens than in tumors; the levels in the kidneys were the same as those measured at 1 h, in the spleens they were higher, and in livers and tumors they were lower than at 1 h after the injection; the greatest decrease occurred in the resistant tumor. cisDDP-DNA adducts were detected after chromatography of digested DNA samples isolated from these tissues and from blood cells. The quantitation of the four cisDDP-DNA adducts (Pt-G, Pt-AG, Pt-GG, G-Pt-G, the same as found previously in cisDDP-reacted DNA) was performed with specific antibodies, in the competitive enzyme-linked immunosorbent assay. The cisDDP-DNA adduct levels in the various 1-h tissue samples showed the same ranking order as the platinum levels. The blood samples contained the lowest amount of adducts. Because of the high platinum level in the kidneys (26 mg/kg of wet tissue), the adducts in this organ also could be determined with atomic absorption spectroscopy (the four adducts comprised about 400 fmol/micrograms of DNA). Comparison of the atomic absorption spectroscopy and enzyme-linked immunosorbent assay data showed excellent agreement. Except for the kidney, all samples showed a decrease in adduct level between 1 and 24 h after cisDDP treatment. The data on the tumors indicated that the difference in susceptibility to cisDDP between the sensitive and resistant tumors is not due to a decreased platinum content or reduced DNA adduct formation in the resistant tumor.


Assuntos
Cisplatino/farmacocinética , DNA de Neoplasias/metabolismo , Platina/farmacocinética , Animais , Feminino , Rim/metabolismo , Fígado/metabolismo , Ratos , Baço/metabolismo , Fatores de Tempo , Distribuição Tecidual
20.
Methods Mol Biol ; 1399: 125-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791500

RESUMO

While until recently the application of high-throughput sequencing approaches has mostly been restricted to bacteria and fungi, these methods have now also become available to less often studied (eukaryotic) groups, such as fauna and protists. Such approaches allow routine diversity screening for large numbers of samples via DNA metabarcoding. Given the enormous taxonomic diversity within the eukaryote tree of life, metabarcoding approaches targeting a single specific DNA region do not allow to discriminate members of all eukaryote clades at high taxonomic resolution. Here, we report on protocols that enable studying the diversity of soil eukaryotes and, at high taxonomic resolution, of individual faunal and protist groups therein using a tiered approach: first, the use of a general eukaryotic primer set targeting a wide range of eukaryotes provides a rough impression on the entire diversity of protists and faunal groups. Second, more focused approaches enable deciphering subsets of soil eukaryotes in higher taxonomic detail. We provide primers and protocols for two examples: soil microarthropods and cercozoan protists.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Fungos/genética , Metagenoma/genética , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA