Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiographics ; 42(1): 176-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990326

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a recently approved breakthrough treatment that has become a new paradigm in treatment of recurrent or refractory B-cell lymphomas and pediatric or adult acute lymphoid leukemia. CAR T cells are a type of cellular immunotherapy that artificially enhances T cells to boost eradication of malignancy through activation of the native immune system. The CAR construct is a synthetically created functional cell receptor grafted onto previously harvested patient T cells, which bind to preselected tumor-associated antigens and thereby activate host immune signaling cascades to attack tumor cells. Advantages include a single treatment episode of 2-3 weeks and durable disease elimination, with remission rates of over 80%. Responses to therapy are more rapid than with conventional chemotherapy or immunotherapy, with intervening short-interval edema. CAR T-cell administration is associated with therapy-related toxic effects in a large percentage of patients, notably cytokine release syndrome, immune effect cell-associated neurotoxicity syndrome, and infections related to immunosuppression. Knowledge of the expected evolution of therapy response and potential adverse events in CAR T-cell therapy and correlation with the timeline of treatment are important to optimize patient care. Some toxic effects are radiologically evident, and familiarity with their imaging spectrum is key to avoiding misinterpretation. Other clinical toxic effects may be occult at imaging and are diagnosed on the basis of clinical assessment. Future directions for CAR T-cell therapy include new indications and expanded tumor targets, along with novel ways to capture T-cell activation with imaging. An invited commentary by Ramaiya and Smith is available online. Online supplemental material is available for this article. ©RSNA, 2022.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Criança , Síndrome da Liberação de Citocina , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Radiologistas , Receptores de Antígenos Quiméricos/uso terapêutico
2.
Adv Anat Pathol ; 26(4): 235-240, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30608259

RESUMO

Fibrosing lesions of the mediastinum represent a small but challenging group of lesions that range in etiology from infectious to idiopathic to neoplastic. The diagnosis of such lesions becomes more challenging in the setting of mediastinoscopic biopsies. In addition, over the years, there has been further accumulation of knowledge of the clinical aspects of these lesions that needs to be incorporated into their evaluation. Therefore, it is essential that in the general evaluation of these fibrosing processes, one not only carefully examines the histopathologic features of the lesion, that of a fibroinflammatory process with the appropriate histochemical and immunohistochemical studies, but also carefully evaluates the clinical presentation and imaging findings. Needless to say, as will be illustrated in this review, determining a definitive unequivocal diagnosis on a small mediastinoscopic biopsy may be difficult, and often one needs to provide guidance on the perspective of the histologic features present. In some cases, mainly tumoral conditions with extensive fibrosis, a conclusive diagnosis can be made; however, it is those cases in which the extensive fibrosis is the only histopathologic feature where more appropriate guidance is required. While this review will focus more on the non-neoplastic fibroinflammatory lesions of the mediastinum, within the discussion of differential diagnoses, we will discuss some neoplastic conditions that commonly show extensive fibrosing features.


Assuntos
Fibrose/diagnóstico , Fibrose/patologia , Doença Relacionada a Imunoglobulina G4/patologia , Mediastino/patologia , Biópsia , Diagnóstico Diferencial , Humanos , Doença Relacionada a Imunoglobulina G4/diagnóstico , Soluções Esclerosantes/farmacologia
3.
Radiographics ; 38(2): 374-391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29528831

RESUMO

Lung cancer remains the leading cause of cancer-related mortality worldwide. To formulate effective treatment strategies and optimize patient outcomes, accurate staging is essential. Lung cancer staging has traditionally relied on a TNM staging system, for which the International Association for the Study of Lung Cancer (IASLC) has recently proposed changes. The revised classification for this eighth edition of the TNM staging system (TNM-8) is based on detailed analysis of a new large international database of lung cancer cases assembled by the IASLC for the purposes of this project. Fundamental changes incorporated into TNM-8 include (a) modifications to the T classification on the basis of 1-cm increments in tumor size; (b) grouping of lung cancers that result in partial or complete lung atelectasis or pneumonitis; (c) grouping of tumors with involvement of a main bronchus irrespective of distance from the carina; (d) reassignment of diaphragmatic invasion in terms of T classification; (e) elimination of mediastinal pleural invasion from the T classification; and (f) subdivision of the M classification into different descriptors on the basis of the number and site of extrathoracic metastases. In response to these revisions, established stage groups have been modified, and others have been created. In addition, recommendations for classifying patterns of disease that result in multiple sites of pulmonary involvement, including multiple primary lung cancers, lung cancers with separate tumor nodules, multiple ground-glass/lepidic lesions, and consolidation, as well as recommendations for lesion measurement, are addressed. Understanding the key revisions introduced in TNM-8 allows radiologists to accurately stage patients with lung cancer and optimize therapy. ©RSNA, 2018.


Assuntos
Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias/normas , Humanos , Neoplasias Pulmonares/diagnóstico por imagem
4.
Radiographics ; 37(2): 413-436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28129068

RESUMO

Division of the mediastinum into specific compartments is beneficial for a number of reasons, including generation of a focused differential diagnosis for mediastinal masses identified on imaging examinations, assistance in planning for biopsies and surgical procedures, and facilitation of communication between clinicians in a multidisciplinary setting. Several classification schemes for the mediastinum have been created and used to varying degrees in clinical practice. Most radiology classifications have been based on arbitrary landmarks outlined on the lateral chest radiograph. A new scheme based on cross-sectional imaging, principally multidetector computed tomography (CT), has been developed by the International Thymic Malignancy Interest Group (ITMIG) and accepted as a new standard. This clinical division scheme defines unique prevascular, visceral, and paravertebral compartments based on boundaries delineated by specific anatomic structures at multidetector CT. This new definition plays an important role in identification and characterization of mediastinal abnormalities, which, although uncommon and encompassing a wide variety of entities, can often be diagnosed with confidence based on location and imaging features alone. In other scenarios, a diagnosis may be suggested when radiologic features are combined with specific clinical information. In this article, the authors present the new multidetector CT-based classification of mediastinal compartments introduced by ITMIG and a structured approach to imaging evaluation of mediastinal abnormalities. ©RSNA, 2017.


Assuntos
Neoplasias do Mediastino/diagnóstico por imagem , Neoplasias do Mediastino/patologia , Mediastino/anatomia & histologia , Tomografia Computadorizada Multidetectores , Diagnóstico Diferencial , Humanos , Mediastino/patologia , Neoplasias do Timo/diagnóstico por imagem
5.
Radiographics ; 36(5): 1285-306, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494286

RESUMO

Neoplasms of the chest wall are uncommon lesions that represent approximately 5% of all thoracic malignancies. These tumors comprise a heterogeneous group of neoplasms that may arise from osseous structures or soft tissues, and they may be malignant or benign. More than 50% of chest wall neoplasms are malignancies and include tumors that may arise as primary malignancies or secondarily involve the chest wall by way of direct invasion or metastasis from intrathoracic or extrathoracic neoplasms. Although 20% of chest wall tumors may be detected at chest radiography, chest wall malignancies are best evaluated with cross-sectional imaging, principally multidetector computed tomography (CT) and magnetic resonance (MR) imaging, each of which has distinct strengths and limitations. Multidetector CT is optimal for depicting bone, muscle, and vascular structures, whereas MR imaging renders superior soft-tissue contrast and spatial resolution and is better for delineating the full extent of disease. Fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT is not routinely performed to evaluate chest wall malignancies. The primary functions of PET/CT in this setting include staging of disease, evaluation of treatment response, and detection of recurrent disease. Ultrasonography has a limited role in the evaluation and characterization of superficial chest wall lesions; however, it can be used to guide biopsy and has been shown to depict chest wall invasion by lung cancer more accurately than CT. It is important that radiologists be able to identify the key multidetector CT and MR imaging features that can be used to differentiate malignant from benign chest lesions, suggest specific histologic tumor types, and ultimately guide patient treatment. (©)RSNA, 2016.


Assuntos
Neoplasias Torácicas/diagnóstico por imagem , Parede Torácica/diagnóstico por imagem , Diagnóstico Diferencial , Humanos , Neoplasias Torácicas/patologia , Parede Torácica/patologia
6.
AJR Am J Roentgenol ; 202(3): W191-201, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24555614

RESUMO

OBJECTIVE: The purposes of this article are to review the treatment options for late-stage biventricular heart failure, discuss the clinical indications for total artificial heart (TAH) implantation, illustrate the expected imaging findings after uncomplicated TAH implantation, and highlight the radiologic findings of common and uncommon complications associated with TAH implantation through case examples. CONCLUSION: TAH implantation is an effective therapeutic option for the treatment of patients with end-stage biventricular heart failure. The duration of implantation varies depending on a particular patient's medical condition and the eventual availability of a human heart for orthotopic transplantation. TAH recipients often undergo imaging with conventional radiography, CT, or both for the assessment of device-related issues, many of which are life-threatening and require emergency management. As the clinical use of the TAH increases and becomes more commonplace, it is imperative that radiologists interpreting imaging studies recognize both the expected and the unexpected imaging findings that affect patient care.


Assuntos
Angiografia Coronária/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/cirurgia , Coração Artificial/efeitos adversos , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Implantação de Prótese/efeitos adversos , Idoso , Medicina Baseada em Evidências , Feminino , Insuficiência Cardíaca/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Desenho de Prótese , Implantação de Prótese/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
7.
J Appl Clin Med Phys ; 15(2): 4515, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24710436

RESUMO

The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back-projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast-to-noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Detecção Precoce de Câncer/métodos , Humanos , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes
8.
AJR Am J Roentgenol ; 200(1): 74-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23255744

RESUMO

OBJECTIVE: The objective of our study was to evaluate the impact of computer-aided detection (CAD) on the identification of subsolid and solid lung nodules on thin- and thick-section CT. MATERIALS AND METHODS: For 46 chest CT examinations with ground-glass opacity (GGO) nodules, CAD marks computed using thin data were evaluated in two phases. First, four chest radiologists reviewed thin sections (reader(thin)) for nodules and subsequently CAD marks (reader(thin) + CAD(thin)). After 4 months, the same cases were reviewed on thick sections (reader(thick)) and subsequently with CAD marks (reader(thick) + CAD(thick)). Sensitivities were evaluated. Additionally, reader(thick) sensitivity with assessment of CAD marks on thin sections was estimated (reader(thick) + CAD(thin)). RESULTS: For 155 nodules (mean, 5.5 mm; range, 4.0-27.5 mm)-74 solid nodules, 22 part-solid (part-solid nodules), and 59 GGO nodules-CAD stand-alone sensitivity was 80%, 95%, and 71%, respectively, with three false-positives on average (0-12) per CT study. Reader(thin) + CAD(thin) sensitivities were higher than reader(thin) for solid nodules (82% vs 57%, p < 0.001), part-solid nodules (97% vs 81%, p = 0.0027), and GGO nodules (82% vs 69%, p < 0.001) for all readers (p < 0.001). Respective sensitivities for reader(thick), reader(thick) + CAD(thick), reader(thick) + CAD(thin) were 40%, 58% (p < 0.001), and 77% (p < 0.001) for solid nodules; 72%, 73% (p = 0.322), and 94% (p < 0.001) for part-solid nodules; and 53%, 58% (p = 0.008), and 79% (p < 0.001) for GGO nodules. For reader(thin), false-positives increased from 0.64 per case to 0.90 with CAD(thin) (p < 0.001) but not for reader(thick); false-positive rates were 1.17, 1.19, and 1.26 per case for reader(thick), reader(thick) + CAD(thick), and reader(thick) + CAD(thin), respectively. CONCLUSION: Detection of GGO nodules and solid nodules is significantly improved with CAD. When interpretation is performed on thick sections, the benefit is greater when CAD marks are reviewed on thin rather than thick sections.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , Algoritmos , Reações Falso-Positivas , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/patologia , Sensibilidade e Especificidade , Nódulo Pulmonar Solitário/patologia
9.
AJR Am J Roentgenol ; 198(3): 563-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22357994

RESUMO

OBJECTIVE: In this pictorial essay, we discuss and illustrate normal and aberrant positioning of nonvascular support and monitoring devices frequently used in critically ill patients, including endotracheal and tracheostomy tubes, chest tubes, and nasogastric and nasoenteric tubes, as well as their inherent complications. CONCLUSION: The radiographic evaluation of the support and monitoring devices used in patients in the ICU is important because the potentially serious complications arising from their introduction and use are often not clinically apparent. Familiarity with normal and abnormal radiographic findings is critical for the detection of these complications.


Assuntos
Tubos Torácicos , Unidades de Terapia Intensiva , Intubação , Radiografia Torácica , Traqueostomia , Tubos Torácicos/efeitos adversos , Estado Terminal , Humanos , Intubação/efeitos adversos , Traqueostomia/efeitos adversos
10.
AJR Am J Roentgenol ; 198(3): 572-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22357995

RESUMO

OBJECTIVE: In this pictorial essay, we discuss and illustrate normal and aberrant positioning of the cardiovascular support and monitoring devices frequently used in critically ill patients, including central venous catheters, pulmonary artery catheters, left atrial catheters, transvenous pacemakers, automatic implantable cardioverter defibrillators, intraaortic counterpulsation balloon pump, and ventricular assist devices, as well as their inherent complications. CONCLUSION: The radiographic evaluation of the support and monitoring devices used in patients in the ICU is important, because the potentially serious complications arising from their introduction and use are often not clinically apparent. Familiarity with normal and abnormal radiographic findings is critical for the detection of these complications.


Assuntos
Cateterismo Venoso Central , Cateterismo de Swan-Ganz , Desfibriladores Implantáveis , Coração Auxiliar , Unidades de Terapia Intensiva , Balão Intra-Aórtico , Marca-Passo Artificial , Radiografia Torácica , Cateterismo Venoso Central/efeitos adversos , Cateterismo de Swan-Ganz/efeitos adversos , Desfibriladores Implantáveis/efeitos adversos , Coração Auxiliar/efeitos adversos , Humanos , Balão Intra-Aórtico/efeitos adversos , Marca-Passo Artificial/efeitos adversos
11.
Eur J Appl Physiol ; 112(12): 4103-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22526250

RESUMO

Physical inactivity in response to a spinal cord injury (SCI) represents a potent stimulus for conduit artery remodelling. Changes in conduit artery characteristics may be induced by the local effects of denervation (and consequent extreme inactivity below the level of the lesion), and also by systemic adaptations due to whole body inactivity. Therefore, we assessed the time course of carotid (i.e. above lesion) and common femoral artery (i.e. below lesion) lumen diameter and wall thickness across the first 24 weeks after an SCI. Eight male subjects (mean age 35 ± 14 years) with a traumatic motor complete spinal cord lesion between T5 and L1 (i.e. paraplegia) were included. Four subjects were measured across the first 6 weeks after SCI, whilst another four subjects were measured from 8 until 24 weeks after SCI. Ultrasound was used to examine the diameter and wall thickness from the carotid and common femoral arteries. Carotid artery diameter did not change across 24 weeks, whilst femoral artery diameter stabilised after the rapid initial decrease during the first 3 weeks after the SCI. Carotid and femoral artery wall thickness showed no change during the first few weeks, but increased both between 6 and 24 weeks (P < 0.05). In conclusion, SCI leads to a rapid and localised decrease in conduit artery diameter which is isolated to the denervated and paralyzed region, whilst wall thickness gradually increases both above and below the lesion. This distinct time course of change in conduit arterial diameter and wall thickness suggests that distinct mechanisms may contribute to these adaptations.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Artéria Femoral/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Adulto , Artérias Carótidas/inervação , Denervação , Humanos , Masculino , Pessoa de Meia-Idade , Paraplegia/complicações , Fatores de Tempo , Ultrassonografia
12.
Cancers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36612278

RESUMO

OBJECTIVES: Cancer patients have worse outcomes from the COVID-19 infection and greater need for ventilator support and elevated mortality rates than the general population. However, previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis and severity prediction models. Little is known about how the AI models perform in cancer patients. In this study, we aim to develop a computational framework for COVID-19 diagnosis and severity prediction particularly in a cancer population and further compare it head-to-head to a general population. METHODS: We have enrolled multi-center international cohorts with 531 CT scans from 502 general patients and 420 CT scans from 414 cancer patients. In particular, the habitat imaging pipeline was developed to quantify the complex infection patterns by partitioning the whole lung regions into phenotypically different subregions. Subsequently, various machine learning models nested with feature selection were built for COVID-19 detection and severity prediction. RESULTS: These models showed almost perfect performance in COVID-19 infection diagnosis and predicting its severity during cross validation. Our analysis revealed that models built separately on the cancer population performed significantly better than those built on the general population and locked to test on the cancer population. This may be because of the significant difference among the habitat features across the two different cohorts. CONCLUSIONS: Taken together, our habitat imaging analysis as a proof-of-concept study has highlighted the unique radiologic features of cancer patients and demonstrated effectiveness of CT-based machine learning model in informing COVID-19 management in the cancer population.

13.
Clin Cancer Res ; 27(14): 3884-3895, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33947690

RESUMO

PURPOSE: This study investigated the efficacy and safety of oral PARP inhibitor veliparib, plus carboplatin and etoposide in patients with treatment-naïve, extensive-stage small cell lung cancer (ED-SCLC). PATIENTS AND METHODS: Patients were randomized 1:1:1 to veliparib [240 mg twice daily (BID) for 14 days] plus chemotherapy followed by veliparib maintenance (400 mg BID; veliparib throughout), veliparib plus chemotherapy followed by placebo (veliparib combination only), or placebo plus chemotherapy followed by placebo (control). Patients received 4-6 cycles of combination therapy, then maintenance until unacceptable toxicity/progression. The primary endpoint was progression-free survival (PFS) with veliparib throughout versus control. RESULTS: Overall (N = 181), PFS was improved with veliparib throughout versus control [hazard ratio (HR), 0.67; 80% confidence interval (CI), 0.50-0.88; P = 0.059]; median PFS was 5.8 and 5.6 months, respectively. There was a trend toward improved PFS with veliparib throughout versus control in SLFN11-positive patients (HR, 0.6; 80% CI, 0.36-0.97). Median overall survival (OS) was 10.1 versus 12.4 months in the veliparib throughout and control arms, respectively (HR, 1.43; 80% CI, 1.09-1.88). Grade 3/4 adverse events were experienced by 82%, 88%, and 68% of patients in the veliparib throughout, veliparib combination-only and control arms, most commonly hematologic. CONCLUSIONS: Veliparib plus platinum chemotherapy followed by veliparib maintenance demonstrated improved PFS as first-line treatment for ED-SCLC with an acceptable safety profile, but there was no corresponding benefit in OS. Further investigation is warranted to define the role of biomarkers in this setting.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/administração & dosagem , Carboplatina/administração & dosagem , Etoposídeo/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzimidazóis/efeitos adversos , Carboplatina/efeitos adversos , Método Duplo-Cego , Etoposídeo/efeitos adversos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Carcinoma de Pequenas Células do Pulmão/patologia , Resultado do Tratamento
14.
Lancet Respir Med ; 9(5): 467-475, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33096027

RESUMO

BACKGROUND: Radiotherapy might augment systemic antitumoral responses to immunotherapy. In the PEMBRO-RT (phase 2) and MDACC (phase 1/2) trials, patients with metastatic non-small-cell lung cancer were randomly allocated immunotherapy (pembrolizumab) with or without radiotherapy. When the trials were analysed individually, a potential benefit was noted in the combination treatment arm. However, owing to the small sample size of each trial, differences in response rates and outcomes were not statistically significant but remained clinically notable. We therefore did a pooled analysis to infer whether radiotherapy improves responses to immunotherapy in patients with metastatic non-small-cell lung cancer. METHODS: Inclusion criteria for the PEMBRO-RT and MDACC trials were patients (aged ≥18 years) with metastatic non-small-cell lung cancer and at least one unirradiated lesion to monitor for out-of-field response. In the PEMBRO-RT trial, patients had previously received chemotherapy, whereas in the MDACC trial, patients could be either previously treated or newly diagnosed. Patients in both trials were immunotherapy-naive. In the PEMBRO-RT trial, patients were randomly assigned (1:1) and stratified by smoking status (<10 vs ≥10 pack-years). In the MDACC trial, patients were entered into one of two cohorts based on radiotherapy schedule feasibility and randomly assigned (1:1). Because of the nature of the intervention in the combination treatment arm, blinding to radiotherapy was not feasible in either trial. Pembrolizumab was administered intravenously (200 mg every 3 weeks) with or without radiotherapy in both trials. In the PEMBRO-RT trial, the first dose of pembrolizumab was given sequentially less than 1 week after the last dose of radiotherapy (24 Gy in three fractions), whereas in the MDACC trial, pembrolizumab was given concurrently with the first dose of radiotherapy (50 Gy in four fractions or 45 Gy in 15 fractions). Only unirradiated lesions were measured for response. The endpoints for this pooled analysis were best out-of-field (abscopal) response rate (ARR), best abscopal disease control rate (ACR), ARR at 12 weeks, ACR at 12 weeks, progression-free survival, and overall survival. The intention-to-treat populations from both trials were included in analyses. The PEMBRO-RT trial (NCT02492568) and the MDACC trial (NCT02444741) are registered with ClinicalTrials.gov. FINDINGS: Overall, 148 patients were included in the pooled analysis, 76 of whom had been assigned pembrolizumab and 72 who had been assigned pembrolizumab plus radiotherapy. Median follow-up for all patients was 33 months (IQR 32·4-33·6). 124 (84%) of 148 patients had non-squamous histological features and 111 (75%) had previously received chemotherapy. Baseline variables did not differ between treatment groups, including PD-L1 status and metastatic disease volume. The most frequently irradiated sites were lung metastases (28 of 72 [39%]), intrathoracic lymph nodes (15 of 72 [21%]), and lung primary disease (12 of 72 [17%]). Best ARR was 19·7% (15 of 76) with pembrolizumab versus 41·7% (30 of 72) with pembrolizumab plus radiotherapy (odds ratio [OR] 2·96, 95% CI 1·42-6·20; p=0·0039), and best ACR was 43·4% (33 of 76) with pembrolizumab versus 65·3% (47 of 72) with pembrolizumab plus radiotherapy (2·51, 1·28-4·91; p=0·0071). Median progression-free survival was 4·4 months (IQR 2·9-5·9) with pembrolizumab alone versus 9·0 months (6·8-11·2) with pembrolizumab plus radiotherapy (hazard ratio [HR] 0·67, 95% CI 0·45-0·99; p=0·045), and median overall survival was 8·7 months (6·4-11·0) with pembrolizumab versus 19·2 months (14·6-23·8) with pembrolizumab plus radiotherapy (0·67, 0·54-0·84; p=0·0004). No new safety concerns were noted in the pooled analysis. INTERPRETATION: Adding radiotherapy to pembrolizumab immunotherapy significantly increased responses and outcomes in patients with metastatic non-small-cell lung cancer. These results warrant validation in a randomised phase 3 trial. FUNDING: Merck Sharp & Dohme.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Imunoterapia , Neoplasias Pulmonares , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Quimiorradioterapia/métodos , Quimiorradioterapia/estatística & dados numéricos , Feminino , Humanos , Imunoterapia/métodos , Imunoterapia/estatística & dados numéricos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/terapia , Estadiamento de Neoplasias , Intervalo Livre de Progressão , Resultado do Tratamento
15.
Eur J Appl Physiol ; 108(1): 141-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19760432

RESUMO

Repeated episodes of ischemia followed by reperfusion, commonly referred to as ischemic preconditioning (IPC), represent an endogenous protective mechanism that delays cell injury. IPC also increases blood flow and improves endothelial function. We hypothesize that IPC will improve physical exercise performance and maximal oxygen consumption. The purpose of the study was to examine the effect of ischemic preconditioning in leg skeletal muscles on cycling exercise performance in healthy individuals. Fifteen healthy, well-trained subjects performed two incremental maximal exercise tests on a bicycle ergometer. Power output, oxygen consumption, ventilation, respiratory quotient, and heart rate were measured continuously. Blood pressure and blood lactate were measured before and after the test. One exercise test was performed after the application of ischemic preconditioning, using a protocol of three series of 5-min ischemia at both legs with resting periods of 5 min in between. The other maximal cycling test served as a control. Tests were conducted in counterbalanced order, at least 1 week apart, at the same time of the day. The repeated ischemic periods significantly increased maximal oxygen consumption from 56.8 to 58.4 ml/min per kg (P = 0.003). Maximal power output increased significantly from 366 to 372 W (P = 0.05). Ischemic preconditioning had no effect on ventilation, respiratory quotient, maximal heart rate, blood pressure or on blood lactate. Repeated short-term leg ischemia prior to an incremental bicycle exercise test improves maximal oxygen consumption by 3% and power output by 1.6%. This protocol, which is suggested to mimic the effects of ischemic preconditioning, may have important implications for exercise performance.


Assuntos
Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Isquemia/fisiopatologia , Precondicionamento Isquêmico/métodos , Adulto , Teste de Esforço/métodos , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Contração Miocárdica/fisiologia , Consumo de Oxigênio/fisiologia , Reperfusão/métodos , Carga de Trabalho
16.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33051340

RESUMO

BACKGROUND: In this phase I/II trial, we evaluated the safety and effectiveness of pembrolizumab, with or without concurrent radiotherapy (RT), for lung and liver lesions from metastatic non-small cell lung cancer (mNSCLC). METHODS: Patients with lung or liver lesions amenable to RT plus at least one additional non-contiguous lesion were included regardless of programmed death-ligand 1 (PD-L1) status. Pembrolizumab was given at 200 mg every 3 weeks for up to 32 cycles with or without concurrent RT. Metastatic lesions were treated with stereotactic body RT (SBRT; 50 Gy in 4 fractions) if clinically feasible or with traditionally fractionated RT (45 Gy in 15 fractions) if not. The primary end point was the best out-of-field lesion response, and a key secondary end point was progression-free survival (PFS). RESULTS: The median follow-up time was 20.4 months. One hundred patients (20 phase I, 80 phase II) were evaluable for toxicity, and 72 phase II patients were evaluable for treatment response. No patients in the phase I group experienced grade 4-5 events; in the phase II group, two had grade 4 events and nine had grade 3 events. The ORR in the combined-modality cohort (irrespective of RT schema) was 22%, vs 25% in the pembrolizumab group (irrespective of receipt of salvage RT) (p=0.99). In the concurrent pembrolizumab+RT groups, the out-of-field ORRs were 38% in the pembrolizumab+SBRT group and 10% in the pembrolizumab+traditional RT group. When examining the pembrolizumab-alone patients, the out-of-field ORRs were 33% in those designated to receive salvage SBRT (if required) and 17% for salvage traditional RT. In all patients, the median PFS for pembrolizumab alone was 5.1 months (95% CI 3.4 to 12.7 months), and pembrolizumab/RT (regardless of schema) was 9.1 months (95% CI 3.6 to 18.4 months) (p=0.52). An exploratory analysis revealed that for patients with low PD-L1 expression, the median PFS was 4.6 vs 20.8 months for pembrolizumab with and without RT, respectively (p=0.004). CONCLUSIONS: Concurrent immunoradiotherapy for mNSCLC is safe, although larger trials are required to address which patients benefit most from RT. TRIAL REGISTRATION NUMBER: NCT02444741.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Adulto , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica
17.
J Am Coll Radiol ; 17(5S): S188-S197, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32370962

RESUMO

Ordering the appropriate diagnostic imaging for occupational lung disease requires a firm understanding of the relationship between occupational exposure and expected lower respiratory track manifestation. Where particular inorganic dust exposures typically lead to nodular and interstitial lung disease, other occupational exposures may lead to isolated small airway obstruction. Certain workplace exposures, like asbestos, increase the risk of malignancy, but also produce pulmonary findings that mimic malignancy. This publication aims to delineate the common and special considerations associated with occupational lung disease to assist the ordering physician in selecting the most appropriate imaging study, while still stressing the importance of a multidisciplinary approach. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Assuntos
Pneumopatias , Sociedades Médicas , Medicina Baseada em Evidências , Humanos , Pneumopatias/diagnóstico por imagem , Estados Unidos
18.
J Am Coll Radiol ; 16(11S): S331-S339, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685101

RESUMO

The immunocompromised patient with an acute respiratory illness (ARI) may present with fever, chills, weight loss, cough, shortness of breath, or chest pain. The number of immunocompromised patients continues to rise with medical advances including solid organ and stem cell transplantation, chemotherapy, and immunomodulatory therapy, along with the continued presence of human immunodeficiency virus and acquired immunodeficiency syndrome. Given the myriad of pathogens that can infect immunocompromised individuals, identifying the specific organism or organisms causing the lung disease can be elusive. Moreover, immunocompromised patients often receive prophylactic or empiric antimicrobial therapy, further complicating diagnostic evaluation. Noninfectious causes for ARI should also be considered, including pulmonary edema, drug-induced lung disease, atelectasis, malignancy, radiation-induced lung disease, pulmonary hemorrhage, diffuse alveolar damage, organizing pneumonia, lung transplant rejection, and pulmonary thromboembolic disease. As many immunocompromised patients with ARI progress along a rapid and potentially fatal course, timely selection of appropriate imaging is of great importance in this setting. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking, or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Assuntos
Hospedeiro Imunocomprometido/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Infecções Respiratórias/diagnóstico por imagem , Infecções Respiratórias/patologia , Tomografia Computadorizada por Raios X/métodos , Doença Aguda , Meios de Contraste , Medicina Baseada em Evidências , Feminino , Humanos , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Guias de Prática Clínica como Assunto , Radiografia Torácica/métodos , Radiologia/normas , Infecções Respiratórias/imunologia , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Sociedades Médicas/normas , Estados Unidos
19.
J Am Coll Radiol ; 16(5S): S184-S195, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31054745

RESUMO

Lung cancer is the leading cause of cancer-related deaths in both men and women. The major risk factor for lung cancer is personal tobacco smoking, particularly for small-cell lung cancer (SCLC) and squamous cell lung cancers, but other significant risk factors include exposure to secondhand smoke, environmental radon, occupational exposures, and air pollution. Education and socioeconomic status affect both incidence and outcomes. Non-small-cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, comprises about 85% of lung cancers. SCLC accounts for approximately 13% to 15% of cases. Prognosis is directly related to stage at presentation. NSCLC is staged using the eighth edition of the tumor-node-metastasis (TNM) criteria of the American Joint Committee on Cancer. For SCLC the eighth edition of TNM staging is recommended to be used in conjunction with the modified Veterans Administration Lung Study Group classification system distinguishing limited stage from extensive stage SCLC. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Meios de Contraste , Diagnóstico Diferencial , Medicina Baseada em Evidências , Humanos , Neoplasias Pulmonares/patologia , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Estadiamento de Neoplasias , Prognóstico , Sociedades Médicas , Estados Unidos
20.
J Immunother Cancer ; 7(1): 237, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484556

RESUMO

BACKGROUND: Preclinical evidence suggests that low-dose radiation may overcome the inhibitory effects of the tumor stroma and improve a tumor's response to immunotherapy, when combined with high-dose radiation to another tumor. The aim of this study was to evaluate tumor responses to this combination in a clinical setting. METHODS: A post-hoc analysis of 3 ongoing immunoradiation trials was performed. Twenty-six (of 155) patients received low-dose radiation (1-20 Gy total), either as scatter from high-dose radiation or from intentional treatment of a second isocenter with low-dose radiation, were evaluated for response. The low-dose lesions were compared to lesions that received no radiation (< 1 Gy total). Response rates, both defined as complete and partial responses as defined by RECIST criteria were used to compare lesion types. RESULTS: The 26 patients had a total of 83 lesions for comparison (38 receiving low-dose, 45 receiving no-dose). The average dose given to low-dose lesions was 7.3 Gy (1.1-19.4 Gy), and the average time to response was 56 days. Twenty-two out of 38 (58%) low-dose lesions met the PR/CR criteria for RECIST compared with 8 out of 45 (18%) no-dose lesions (P = 0.0001). The median change for longest diameter size for low-dose lesions was - 38.5% compared to 8% in no-dose lesions (P < 0.0001). Among the low-dose lesions that had at least one no-dose lesion within the same patient as a control (33 and 45 lesions respectively), 12 low-dose lesions (36%) responded without a corresponding response in their no-dose lesions; Conversely, two (4%) of the no-dose lesions responded without a corresponding response in their low-dose lesion (P = 0.0004). CONCLUSIONS: Low-dose radiation may increase systemic response rates of metastatic disease treated with high-dose radiation and immunotherapy.


Assuntos
Imunoterapia/mortalidade , Neoplasias/terapia , Radiocirurgia/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Terapia Combinada , Relação Dose-Resposta à Radiação , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/patologia , Prognóstico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA