RESUMO
Establishing and maintaining protected areas (PAs) are key tools for biodiversity conservation. However, this approach is insufficient for many species, particularly those that are wide-ranging and sparse. The cheetah Acinonyx jubatus exemplifies such a species and faces extreme challenges to its survival. Here, we show that the global population is estimated at â¼7,100 individuals and confined to 9% of its historical distributional range. However, the majority of current range (77%) occurs outside of PAs, where the species faces multiple threats. Scenario modeling shows that, where growth rates are suppressed outside PAs, extinction rates increase rapidly as the proportion of population protected declines. Sensitivity analysis shows that growth rates within PAs have to be high if they are to compensate for declines outside. Susceptibility of cheetah to rapid decline is evidenced by recent rapid contraction in range, supporting an uplisting of the International Union for the Conservation of Nature (IUCN) Red List threat assessment to endangered. Our results are applicable to other protection-reliant species, which may be subject to systematic underestimation of threat when there is insufficient information outside PAs. Ultimately, conserving many of these species necessitates a paradigm shift in conservation toward a holistic approach that incentivizes protection and promotes sustainable human-wildlife coexistence across large multiple-use landscapes.
Assuntos
Acinonyx , Conservação dos Recursos Naturais , África , Animais , Ásia , Biodiversidade , Simulação por Computador , Extinção Biológica , Modelos Biológicos , Dinâmica Populacional/tendências , Fatores de RiscoRESUMO
In Africa, humans and large carnivores compete over access to resources, including prey. Disturbance by humans to kills made by carnivores, often for purposes of obtaining all or portions of the carcass, constitutes a form of human-wildlife conflict. However the occurrence of this practice, known as human kleptoparasitism, and its impact on carnivores has received little scientific attention. We obtained expert opinions from African lion researchers and stakeholders via a standardized questionnaire to characterize the geographic extent and frequency of human kleptoparasitism as it occurs in modern times. Our survey found modern human kleptoparasitism on kills made by lions, and possibly other large carnivores in Africa, to be geographically more widespread than previously reported. Meat lost to humans requires carnivores to hunt and kill additional prey thereby causing stress, increasing their energetic costs and risks of natural injury, and exposing them to risk of direct injury or death from human usurpers. Because of their conspicuous behaviors and tendency towards killing large-bodied prey, lions are particularly susceptible to humans detecting their kills. While human kleptoparasitism was geographically widespread, socio-economic factors influenced the frequency of occurrence. Prey type (wild game or domestic livestock) influenced human attitudes towards meat theft; ownership allows for legal recovery of livestock carcasses, while possessing wild game meat is mostly illegal and may incur penalties. Meat theft was associated with other illegal activities (i.e., illegal mining) and most prevalent among people of low income, including underpaid game scouts. Despite quantifiable costs to carnivores of human disturbance to their kills, the majority of experts surveyed reported a lack of knowledge on this practice. We propose that human disturbance at kills, especially loss of prey through human kleptoparasitism, constitutes an important anthropogenic threat that may seriously impact energy budgets of individual lions and other scavengers when meat and carcasses are removed from the ecosystem, and that the costs incurred by carnivores warrants further investigation.
Assuntos
Conservação dos Recursos Naturais , Leões , Carne , Comportamento Predatório , Animais , Humanos , Conservação dos Recursos Naturais/economia , África , Caça , Inquéritos e Questionários , Animais SelvagensRESUMO
Social carnivores frequently live in fission-fusion societies, where individuals that share a common territory or home range may be found alone, in subgroups, or altogether. Absolute group size and subgroup size is expected to vary according to resource distribution, but for species that are susceptible to anthropogenic pressures, other factors may be important drivers. African lions (Panthera leo) are the only truly social felid and lion prides are characterized by fission-fusion dynamics with social groups frequently splitting and reforming, and subgroup membership can change continuously and frequently. The number of individuals in a group can be reflective of social, ecological, and anthropogenic conditions. This dynamic behavior makes understanding lion grouping patterns crucial for tailoring conservation measures. The evolution of group living in lions has been the topic of numerous studies, and we drew on these to formulate hypotheses relating to group size and subgroup size variation. Based on data collected from 199 lion groups across eight sites in Kenya, we found that group sizes were smaller when lions were closer to human settlements, suggesting that edge effects are impacting lions at a national scale. Smaller groups were also more likely when they were far from water, and were associated with very low and very high levels of non-tree vegetation. We found significant differences between the study sites, with the Maasai Mara having the largest groups (mean ± SD = 7.7 ± 4.7, range = 1-19), and Amboseli conservation area the smallest (4.3 ± 3.5, range = 1-14). While long-term studies within a single site are well suited to thoroughly differentiate between absolute group size and subgroup size, our study provides unique insight into the correlates of grouping patterns in a vulnerable species at a national scale.
RESUMO
The fishing cat Prionailurus viverrinus is a wetland specialist species endemic to South and Southeast Asia. Nepal represents the northern limit of its biogeographic range, but comprehensive information on fishing cat distribution in Nepal is lacking. To assess their distribution, we compiled fishing cat occurrence records (n = 154) from Nepal, available in published literature and unpublished data (2009-2020). Bioclimatic and environmental variables associated with their occurrence were used to predict the fishing cat habitat suitability using MaxEnt modeling. Fishing cat habitat suitability was associated with elevation (152-302 m), precipitation of the warmest quarter, i.e., April-June (668-1014 mm), precipitation of the driest month (4-7 mm), and land cover (forest/grassland and wetland). The model predicted an area of 4.4% (6679 km2) of Nepal as potential habitat for the fishing cat. About two-thirds of the predicted potentially suitable habitat lies outside protected areas; however, a large part of the highly suitable habitat (67%) falls within protected areas. The predicted habitat suitability map serves as a reference for future investigation into fishing cat distribution as well as formulating and implementing effective conservation programs in Nepal. Fishing cat conservation initiatives should include habitats inside and outside the protected areas to ensure long-term survival. We recommend conservation of wetland sites, surveys of fishing cats in the identified potential habitats, and studying their genetic connectivity and population status.
RESUMO
Wildlife attacks on humans and economic losses often result in reduced support of local communities for wildlife conservation. Information on spatial and temporal patterns of such losses in the highly affected areas contribute in designing and implementing effective mitigation measures. We analyzed the loss of humans, livestock and property caused by wildlife during 1998 to 2016, using victim family's reports to Chitwan National Park authorities and Buffer Zone User Committees. A total of 4,014 incidents were recorded including attacks on humans, livestock depredation, property damage and crop raiding caused by 12 wildlife species. In total >400,000 US dollar was paid to the victim families as a relief over the whole period. Most of the attacks on humans were caused by rhino, sloth bear, tiger, elephant, wild boar and leopard. A significantly higher number of conflict incidents caused by rhino and elephant were observed during full moon periods. An increase in the wildlife population did not coincide with an equal rise in conflict incidents reported. Underprivileged ethnic communities were attacked by wildlife more frequently than expected. Number of attacks on humans by carnivores and herbivores did not differ significantly. An insignificant decreasing trend of wildlife attacks on humans and livestock was observed with significant variation over the years. Tiger and leopard caused >90% of livestock depredation. Tigers killed both large (cattle and buffalo) and medium sized (goat, sheep, pig) livestock but leopard mostly killed medium sized livestock. Most (87%) of the livestock killing during 2012-2016 occurred within the stall but close (<500m) to the forest edge. Both the percentage of households with livestock and average holding has decreased over the years in buffer zone. Decreased forest dependency as well as conflict mitigation measures (electric and mesh wire fences) have contributed to keep the conflict incidents in control. Strengthening mitigation measures like construction of electric or mesh wire fences and predator-proof livestock corrals along with educating local communities about wildlife behavior and timely management of problem animals (man-eater tiger, rage elephant etc.) will contribute to reduce the conflict.
Assuntos
Animais Selvagens , Comportamento Animal , Parques Recreativos , Agricultura/economia , Animais , Conservação dos Recursos Naturais , Etnicidade , Florestas , Humanos , Modelos Lineares , Lua , Nepal , Pobreza , Estações do Ano , Análise Espaço-Temporal , Inquéritos e Questionários , Fatores de TempoRESUMO
The global lion (Panthera leo) population decline is partly a result of retaliatory killing in response to livestock depredation. Nairobi National Park (NNP) is a small protected area in Kenya surrounded by a human-dominated landscape. Communities around the park use flashlights to deter lions from their livestock bomas. We investigated the response by lions to the installation of a LED flashlight technique during 2007-2016.We interviewed 80 owners of livestock bomas with flashlights (n = 43) and without (n = 37) flashlights in the surroundings of NNP and verified reported attacks on bomas against predation data over10 years. The frequency of attacks on bomas equipped with flashlights was significantly lower compared to bomas without flashlights. We also found that after flashlight installation at livestock bomas, lion attacks took place further away from the park edge, towards areas where bomas without flashlights were still present. With increased numbers of flashlight installations at bomas in recent years, we further noticed a shift from nocturnal to more diurnal predation incidences. Our study shows that the LED flashlight technique is effective in reducing nocturnal livestock predation at bomas by lions. Long term studies on the effects as well as expansion of this technique into other communities around NNP are recommended.
Assuntos
Luz , Leões , Gado , Comportamento Predatório , Animais , Conservação dos Recursos Naturais , QuêniaAssuntos
Comportamento Animal/fisiologia , Cristianismo , Jejum , Hyaenidae/fisiologia , Animais , Etiópia , Fezes , HumanosRESUMO
The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.
Assuntos
DNA Mitocondrial/genética , Marcadores Genéticos/genética , Leões/genética , África Central , África Ocidental , Animais , Evolução Biológica , Análise por Conglomerados , Conservação dos Recursos Naturais , Evolução Molecular , Variação Genética , Geografia , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Análise de Componente Principal , Especificidade da EspécieRESUMO
The lion has historically probably been widespread at low densities in West and Central Africa, nowadays they are largely restricted to small isolated populations inside protected areas. The total number is probably between 1200 and 2700, the best possible guesstimate would be 1700. Mankind is the main cause for the suspected decline of lion populations, both inside and outside protected areas. Very little research has been done on West and Central African lions a few examples are summarized here. The international community is slowly becoming aware of threats to lions in the region and some initiatives for lion conservation have started.
Assuntos
Conservação dos Recursos Naturais/métodos , Leões , África Central , África Austral , África Ocidental , Animais , Biodiversidade , Conflito Psicológico , Bases de Dados Factuais , Meio Ambiente , Humanos , Densidade Demográfica , Dinâmica PopulacionalRESUMO
Lion populations have undergone a severe decline in West Africa. As baseline for conservation management, we assessed the group structure of lions in the Pendjari Biosphere Reserve in Benin. This reserve, composed of one National Park and two Hunting Zones, is part of the WAP transboundary complex of protected areas. Overall mean group size was 2.6±1.7 individuals (nâ=â296), it was significantly higher in the National Park (2.7±1.7, nâ=â168) than in the Hunting Zones (2.2±1.5, nâ=â128). Overall adult sex ratio was even, but significantly biased towards females (0.67) in the National Park and towards males (1.67) in the Hunting Zones. Our results suggest that the Pendjari lion population is affected by perturbations, such as trophy hunting.