Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39080213

RESUMO

New wound dressings based on polymeric membranes have been widely exploited for clinical applications to assist in the healing process and prevent additional complications (e.g., bacterial infections). Here we propose the development of a new production method of polymeric membranes based on chitosan, incorporating glycolic extract of Aloe vera with joint synthesis of silver nanoparticles for use as a new bioactive dressing. The membranes were obtained by casting technique, and their morphological, physicochemical characteristics, degree of swelling, degradation profile and antimicrobial activity evaluated. Morphological analyzes confirmed the synthesis and presence of silver nanoparticles in the polymeric membrane. The chemical compatibility between the materials was demonstrated through thermal analysis (TGA and DSC) combined with ATR-FTIR tests, showing the complexation of the membranes (Mb-Ch-Ex.Av-NPs). All membranes were characterized as hydrophilic material (with a contact angle (Ó©) < 90°); however, the highest degree of swelling was obtained for the chitosan. (Mb-Ch) membrane (69.91 ± 5.75%) and the lowest for Mb-Ch-Ex.Av-NPs (26.62 ± 8.93%). On the other hand, the degradation profile was higher for Mb-Ch-Ex.Av-NPs (77.85 ± 7.51%) and lower for Mb-Ch (57.60 ± 2.29%). The manufactured bioactive dressings showed activity against Escherichia coli and Staphylococcus aureus. Our work confirmed the development of translucent and flexible chitosan-based membranes, incorporating Aloe vera glycolic extract with joint synthesis of silver nanoparticles for use as a new bioactive dressing, with proven antimicrobial activity.

2.
Colloids Surf B Biointerfaces ; 213: 112380, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35151995

RESUMO

Aedes aegypti is currently a major public health problem. This mosquito is responsible for the spread of infectious diseases that have been causing epidemics worldwide. Surfactant-stabilized systems, such as microemulsions, liquid-crystalline precursors and liquid crystals, are promising sustained delivery formulations of hydrophilic and hydrophobic substances. These systems are biocompatible water-soluble reservoirs for N-tosylindole exhibiting biological activity against Aedes aegypti Linn. (Diptera: Culicidae) larvae. The ternary diagram displayed four regions: microemulsion (ME), liquid crystal (LC), emulsion (EM) and phase separation (PS). PLM and SAXS distinguished microemulsions, lamellar and hexagonal phase liquid crystals. The system had a lethal concentration of 50% (LC50 = 0.1 ppm, 0.36 µM) lower than pure N-tosylindole (0.24 ppm, 0.88 µM), which has limitations in aqueous media. Furthermore, the formulation displayed no toxicity to Artemia sp., a non-target organism. The system exhibited excellent larvicidal activity as an alternative to commercial larvicides that have shown resistance and toxicity to the environment by Ae. aegypti larvae due to prolonged use. In addition, a two-fold increase in potency was observed.


Assuntos
Aedes , Inseticidas , Animais , Indóis , Inseticidas/química , Inseticidas/farmacologia , Larva , Extratos Vegetais/química , Espalhamento a Baixo Ângulo , Compostos de Tosil , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA