RESUMO
Silicene and other two-dimensional materials, such as germanene and stanene, have chemically reactive surfaces and are prone to oxidation in air, and thus require an encapsulation layer for ex situ studies or integration in an electronic device. In this work, we investigated NaCl as an encapsulation material for silicene. NaCl was deposited on the surface of epitaxial silicene on ZrB2(0001) thin films near room temperature and studied using synchrotron-based high-resolution photoelectron spectroscopy. The deposition of NaCl resulted in dissociative chemisorption, where the majority of epitaxial silicene reacted to form Si-Clx species.
RESUMO
We present a method for the formation of an epitaxialâ surface layer involving B, N, and Si atoms on a ZrB2(0001) thin film on Si(111). It has the potential to be an insulating growth template for 2D semiconductors. The chemical reaction of NH3 molecules with the silicene-terminated ZrB2 âsurface was characterized by synchrotron-based, high-resolution core-level photoelectron spectroscopy and low-energy electron diffraction. In particular, the dissociative chemisorption of NH3 at 400 °C leads to surfaceâ nitridation, and subsequent annealing up to 830 °C results in a solid phase reaction with the ZrB2 subsurface layers. In this way, a new nitride-based epitaxialâ surface layer is formed with hexagonal symmetry and a single in-plane crystal orientation.
RESUMO
Since epitaxial silicene is not chemically inert under ambient conditions, its application in devices and the ex-situ characterization outside of ultrahigh vacuum environments require the use of an insulating capping layer. Here, we report on a study of the feasibility of encapsulating epitaxial silicene on ZrB2(0001) thin films grown on Si(111) substrates by aluminum nitride (AlN) deposited using trimethylaluminum (TMA) and ammonia (NH3) precursors. By in-situ high-resolution core-level photoelectron spectroscopy, the chemical modifications of the surface due to subsequent exposure to TMA and NH3 molecules, at temperatures of 300 °C and 400 °C, respectively, have been investigated. While an AlN-related layer can indeed be grown, silicene reacts strongly with both precursor molecules resulting in the formation of Si-C and Si-N bonds such that the use of these precursors does not allow for the protective AlN encapsulation that leaves the electronic properties of silicene intact.
RESUMO
As silicene is not chemically inert, the study and exploitation of its electronic properties outside of ultrahigh vacuum environments require the use of insulating capping layers. In order to understand if aluminum oxide might be a suitable encapsulation material, we used high-resolution synchrotron photoelectron spectroscopy to study the interactions of Al atoms and O2 molecules, as well as the combination of both, with epitaxial silicene on thin ZrB2(0001) films grown on Si(111). The deposition of Al atoms onto silicene, up to the coverage of about 0.4 Al per Si atoms, has little effect on the chemical state of the Si atoms. The silicene-terminated surface is also hardly affected by exposure to O2 gas, up to a dose of 4500 L. In contrast, when Al-covered silicene is exposed to the same dose, a large fraction of the Si atoms becomes oxidized. This is attributed to dissociative chemisorption of O2 molecules by Al atoms at the surface, producing reactive atomic oxygen species that cause the oxidation. It is concluded that aluminum oxide overlayers prepared in this fashion are not suitable for encapsulation since they do not prevent but actually enhance the degradation of silicene.
RESUMO
From the analysis of high-resolution Si 2p photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra, we show that core level excitations of epitaxial silicene on ZrB2(0001) thin films are characteristically different from those of sp(3)-hybridized silicon. In particular, it is revealed that the lower Si 2p binding energies and the low onset in the NEXAFS spectra as well as the occurrence of satellite features in the core level spectra are attributed to the screening by low-energy valence electrons and interband transitions between π bands, respectively. The analysis of observed Si 2p intensities related to chemically distinct Si atoms indicates the presence of at least one previously unidentified component. The presence of this component suggests that the observation of stress-related stripe domains in scanning tunnelling microscopy images is intrinsically linked to the relaxation of Si atoms away from energetically unfavourable positions.
RESUMO
We report on the tuning of the Kondo effect in thin Au films containing a monolayer of cobalt(II) terpyridine complexes by altering the ligand structure around the Co(2+) ions by depositing a thin Au capping layer on top of the monolayer on Au by magnetron sputtering (more energetic) and e-beam evaporation (softer). We show that the Kondo effect is slightly enhanced with respect to that of the uncapped film when the cap is deposited by evaporation, and significantly enhanced when magnetron sputtering is used. The Kondo temperature (TK) increases from 3 to 4.2/6.2 K for the evaporated/sputtered caps. X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy investigation showed that the organic ligands remain intact upon Au e-beam evaporation; however, sputtering inflicts significant change in the Co(2+) electronic environment. The location of the monolayer-on the surface or embedded in the film-has a small effect. However, the damage of Co-N bonds induced by sputtering has a drastic effect on the increase of the impurity-electron interaction. This opens up the way for tuning of the magnetic impurity states, e.g. spin quantum number, binding energy with respect to the host Fermi energy, and overlap via the ligand structure around the ions.
RESUMO
The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design.
RESUMO
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
RESUMO
A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators.
RESUMO
Twenty, 2 to 5 months pregnant heifers were injected with 25 mg. and 12.5 mg. Prostaglandin F2alpha on two consecutive days or with a single dose of 20 mg. of a long acting oestrogen (oestradiol valerate). Abortion occurred at an average interval of 3,6 days in the 10 PG F2alpha treated animals and after 10,8 days in 8 out of 10 oestradiol valerate treated heifers. The foetuses of the PG F2alpha treated heifers were in a fresh state while the oestradiol foetuses were already degenerating at the time of abortion. A rather severe vaginal discharge after abortion was more often observed in oestradiol valerate induced abortion. Development of the mammary glands and prolonged oestrus periods also was more pronounced in these animals. In both treatments the concentration of progestins in peripheral blood dropped to less than 1 ng/ml at the time of abortion. The decline was very rapid after administration of PG F2alpha and rather slow after oestradiol valerate. Based on its rapid luteolytic effect and rapid elimination after administration which prevents interferring with the endocrine system for a prolonged time, PG F2alpha is preferred as an abortifacient during the first 4 to 5 months of pregnancy in cattle.
Assuntos
Aborto Induzido/veterinária , Bovinos , Estradiol/análogos & derivados , Prostaglandinas F , Animais , Estro/efeitos dos fármacos , Feminino , Feto/patologia , Idade Gestacional , Glândulas Mamárias Animais/efeitos dos fármacos , Gravidez , Progestinas/sangue , Fatores de TempoRESUMO
Systems featuring large magnetoresistance (MR) at room temperature and in small magnetic fields are attractive owing to their potential for applications in magnetic field sensing and data storage. Usually, the magnetic properties of materials are exploited to achieve large MR effects. Here, we report on an exceptionally large (>2000%), room-temperature, small-field (a few millitesla) MR effect in one-dimensional, nonmagnetic systems formed by molecular wires embedded in a zeolite host crystal. This ultrahigh MR effect is ascribed to spin blockade in one-dimensional electron transport. Its generic nature offers very good perspectives to exploit the effect in a wide range of low-dimensional systems.
RESUMO
The mutual interaction of localized magnetic moments and their interplay with itinerant conduction electrons in a solid are central to many phenomena in condensed-matter physics, including magnetic ordering and related many-body phenomena such as the Kondo effect, the Ruderman-Kittel-Kasuya-Yoshida interaction and carrier-induced ferromagnetism in diluted magnetic semiconductors. The strength and relative importance of these spin phenomena are determined by the magnitude and sign of the exchange interaction between the localized magnetic moments and also by the mean distance between them. Detailed studies of such systems require the ability to tune the mean distance between the localized magnetic moments, which is equivalent to being able to control the concentration of magnetic impurities in the host material. Here, we present a method for doping a gold film with localized magnetic moments that involves depositing a monolayer of a metal terpyridine complex onto the film. The metal ions in the complexes can be cobalt or zinc, and the concentration of magnetic impurities in the gold film can be controlled by varying the relative amounts of cobalt complexes (which carry a spin) and zinc complexes (which have zero spin). Kondo and weak localization measurements demonstrate that the magnetic impurity concentration can be systematically varied up to â¼800 ppm without any sign of inter-impurity interaction. Moreover, we find no evidence for the unwanted clustering that is often produced when using alternative methods.
Assuntos
Cristalização/métodos , Ouro/química , Nanopartículas/química , Campos Magnéticos , Teste de Materiais , Marcadores de SpinRESUMO
Thin films of V(TCNE)x were deposited in ultrahigh vacuum using a film growth technique based on in situ chemical vapor deposition of tetracyanoethylene, TCNE, and bis-benzene vanadium, V(C6H6)2. The in situ preparation method enabled, for the first time, experimental analysis of oxygen-free films. X-ray magnetic circular dichroism measurements recorded at the V L(2,3) edge confirmed room temperature magnetic ordering. A combination of conventional photoelectron spectroscopy (PES) and resonant photoemission (RPE) measured at the V L3 edge shows that the highest occupied electronic state is V(3d) derived. The rearrangements of the TCNE- related valence electronic states observed in PES and the evidence of V(3d) and TCNE- pi(pi*) orbital overlap contained in RPE spectra, indicate that strong, covalent type bonding occurs between the vanadium and the TCNE molecules.
RESUMO
In organic-based (opto)electronic devices, charge injection into conjugated materials is governed to a large extent by the metal-organic interface dipole. Controlling the injection of charges requires a better understanding of the fundamental origin of the interface dipole. In this context, photoelectron spectroscopies and density functional theory calculations are used to investigate the interaction between para-phenylenediamine (PPDA), an electron donor, and a polycrystalline nickel surface. The interface dipole formed upon chemisorption of one PPDA monolayer strongly modifies the work function of the nickel surface from 5.10 to 3.55 eV. The work function decrease of 1.55 eV is explained by the electron-donor character of PPDA and the modification of the electronic density at the metal surface. PPDA monolayers are composed of tilted molecules interacting via the nitrogen lone-pair and PPDA molecules chemisorbed parallel to the surface via their pi-electron density. Annealing the monolayer leads to dehydrogenation of PPDA activated by the nickel surface, as found for other amines.