Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 16: 100-105, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27612654

RESUMO

BACKGROUND: The photodynamic therapy (PDT) has been used to treat cancer mainly by inducing oxidative stress. Our aim was to evaluate the effect of PDT and its combination with methoxyamine (MX), a blocker of base excision repair (BER), in cells expressing high levels of the APE1 protein, which is involved in cell oxidative damage response. METHODS: The HeLa and A549 cells were treated for 3h with chloroaluminum phthalocyanine incorporated into a well-designed nanoemulsion (ClAlPc/NE); and then irradiated by visible light (@670nm) with doses of 0.1, 0.5 and 1.0J/cm2. A simultaneous combination of MX+ClAlPc/NE was performed and then irradiated with the selected dose of 0.5J/cm2. The treatments were evaluated in terms of viability, clonogenicity, DNA fragmentation, and cell death mechanism by apoptosis and/or necrosis. RESULTS: The APE1 protein expression observed was higher in HeLa than in A549. Both cell lines exhibited substantial differences in cell cytotoxicity. The PDT decreased the clonogenicity of HeLa by inducing apoptosis (sub-G1 and annexin detection). Additionaly, the MX potentiates the PDT-effects in HeLa. Otherwise, low cytotoxicity was observed in A549 cells. CONCLUSION: The PDT induced apoptosis in high APE1 expressive HeLa cells, and the blockage of BER by MX increased its effects.


Assuntos
Apoptose/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/química , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Fotoquimioterapia/métodos , Células A549 , Apoptose/efeitos da radiação , Emulsões , Células HeLa , Humanos , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/patologia , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Resultado do Tratamento
2.
Springerplus ; 5(1): 1418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625972

RESUMO

Phytases are enzymes that hydrolyze the ester linkage of phytic acid, releasing inositol and inorganic phosphate. The phytic acid (phytate) is a major form of phosphorus in plant foods. Knowing that diet for animal of production has the cereal base (corn and soybean), primarily, broilers need for an alternative to use of the phosphate present in these ingredients, since it does not naturally produce the enzyme phytase, which makes it available. The aims of this work was studding the safe supplementation of Aspergillus japonicus var. Saito crude phytase in feeding broilers and check the biochemical effect on performance and bones of these animals. The enzymatic extract did not have aflatoxins B1, B2, G2 and G1 and zearalenone and ochratoxin, and low concentrations of this extract did not have cytotoxic effects on cells derived from lung tissue. The in vivo experiments showed that the phytase supplied the available phosphate reduction in the broiler feed formulation, with a live weight, weight gain, feed intake, feed conversion, viability, productive efficiency index and carcass yield similar to the control test. Furthermore, the phytase supplementation favored the formation of bone structure and performance of the broilers. The results show the high biotechnological potential of A. japonicus phytase on broiler food supplementation to reduce phosphorus addition in the food formulation. So, this enzyme could be used as a commercial alternative to animal diet supplementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA