Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 12: 507, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23130941

RESUMO

BACKGROUND: PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. METHODS: LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. RESULTS: LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. CONCLUSIONS: Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , RNA não Traduzido/metabolismo , Receptores Androgênicos/metabolismo , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Immunoblotting , Masculino , Neoplasias da Próstata/genética , RNA Interferente Pequeno , RNA não Traduzido/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transfecção
2.
Mol Cancer Res ; 9(3): 280-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21263033

RESUMO

Ovarian carcinoma is one of the most aggressive gynecological diseases and generally diagnosed at advanced stages. Osteopontin (OPN) is one of the proteins overexpressed in ovarian cancer and is involved in tumorigenesis and metastasis. Alternative splicing of OPN leads to 3 isoforms, OPNa, OPNb, and OPNc. However, the expression pattern and the roles of each of these isoforms have not been previously characterized in ovarian cancer. Herein, we have evaluated the expression profiling of OPN isoforms in ovarian tumor and nontumor samples and their putative roles in ovarian cancer biology using in vitro and in vivo functional assays. OPNa and OPNb were expressed both in tumor and nontumor ovarian samples, whereas OPNc was specifically expressed in ovarian tumor samples. The isoform OPNc significantly activated OvCar-3 cell proliferation, migration, invasion, anchorage-independent growth and tumor formation in vivo. Additionally, we have also shown that some of the OPNc-dependent protumorigenic roles are mediated by PI3K/Akt signaling pathway. OPNc stimulated immortalized ovarian epithelial IOSE cell proliferation, indicating a role for this isoform in ovarian cancer tumorigenesis. Functional assays using OPNc conditioned medium and an anti-OPNc antibody have shown that most cellular effects observed herein were promoted by the secreted OPNc. According to our data, OPNc-specific expression in ovarian tumor samples and its role on favoring different aspects of ovarian cancer progression suggest that secreted OPNc contributes to the physiopathology of ovarian cancer progression and tumorigenesis. Altogether, the data open possibilities of new therapeutic approaches for ovarian cancer that selectively down regulate OPNc, altering its properties favoring ovarian tumor progression.


Assuntos
Proteína Oncogênica v-akt/metabolismo , Osteopontina/genética , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Progressão da Doença , Feminino , Técnicas de Transferência de Genes/mortalidade , Genes Reporter/genética , Humanos , Osteopontina/metabolismo , Neoplasias Ovarianas/classificação , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Transdução de Sinais/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA