Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36830248

RESUMO

Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.

2.
Int J Pharm ; 630: 122465, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36476664

RESUMO

Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.


Assuntos
Óxido Nítrico , Dermatopatias , Humanos , Óxido Nítrico/farmacologia , Materiais Biocompatíveis , Pele , Cicatrização , Dermatopatias/tratamento farmacológico
3.
Pharmaceutics ; 14(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36559330

RESUMO

The incorporation of both nitric oxide (NO) donor (S-nitrosoglutathione, GSNO) and silica nanoparticles loaded with cisplatin (SiO2@CisPt NPs) into a polymeric matrix represents a suitable approach to creating a drug-delivery system with sustained and localized drug release against tumor cells. Herein, we report the synthesis, characterization, and cytotoxicity evaluation of Pluronic F-127/hyaluronic acid hydrogel containing GSNO and SiO2@CisPt NPs against breast cancer cells. SiO2@CisPt NPs were successfully synthesized, revealing a spherical morphology with an average size of 158 ± 20 nm. Both GSNO and SiO2@CisPt NPs were incorporated into the thermoresponsive Pluronic/hyaluronic hydrogel for sustained and localized release of both NO and cisplatin. The kinetics of NO release from a hydrogel matrix revealed spontaneous and sustained release of NO at the millimolar range for 24 h. The MTT assay showed concentration-dependent cytotoxicity of the hydrogel. The combination of GSNO and SiO2@CisPt incorporated into a polymeric matrix decreased the cell viability 20% more than the hydrogel containing only GSNO or SiO2@CisPt. At 200 µg/mL, this combination led to a critical cell viability of 30%, indicating a synergistic effect between GSNO and SiO2@CisPt NPs in the hydrogel matrix, and, therefore, highlighting the potential application of this drug-delivery system in the field of biomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA