Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(14-15): 5701-5717, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34258640

RESUMO

The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.


Assuntos
Peróxido de Hidrogênio , Peroxirredoxinas , Animais , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Plantas/metabolismo
2.
Biotechnol Lett ; 42(11): 2333-2344, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638188

RESUMO

Acute lymphoblastic leukaemia (ALL) affects lymphoblastic cells and is the most common neoplasm during childhood. Among the pharmaceuticals used in the treatment protocols for ALL, Asparaginase (ASNase) from Escherichia coli (EcAII) is an essential biodrug. Meanwhile, the use of EcAII in neoplastic treatments causes several side effects, such as immunological reactions, hepatotoxicity, neurotoxicity, depression, and coagulation abnormalities. Commercial EcAII is expressed as a recombinant protein, similar to novel enzymes from different organisms; in fact, EcAII is a tetrameric enzyme with high molecular weight (140 kDa), and its overexpression in recombinant systems often results in bacterial cell death or the production of aggregated or inactive EcAII protein, which is related to the formation of inclusion bodies. On the other hand, several commercial expression strains have been developed to overcome these expression issues, but no studies on a systematic evaluation of the E. coli strains aiming to express recombinant asparaginases have been performed to date. In this study, we evaluated eleven expression strains at a low temperature (16 °C) with different characteristics to determine which is the most appropriate for asparaginase expression; recombinant wild-type EcAII (rEcAII) was used as a prototype enzyme and the secondary structure content, oligomeric state, aggregation and specific activity of the enzymes were assessed. Structural analysis suggested that a correctly folded tetrameric rEcAII was obtained using ArcticExpress (DE3), a strain that co-express chaperonins, while all other strains produced poorly folded proteins. Additionally, the enzymatic assays showed high specific activity of proteins expressed by ArcticExpress (DE3) when compared to the other strains used in this work.


Assuntos
Asparaginase/química , Asparaginase/metabolismo , Escherichia coli/enzimologia , Asparaginase/genética , Cromatografia em Gel , Dicroísmo Circular , Temperatura Baixa , Citosol/metabolismo , Escherichia coli/química , Escherichia coli/classificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Estrutura Secundária de Proteína
3.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202406

RESUMO

Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA