Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dent Traumatol ; 40(4): 453-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459667

RESUMO

BACKGROUND/AIMS: The study aimed to assess the surface characteristics of sports mouthguards under mechanical stresses during cleaning, either by brushing or immersion in disinfectant solutions. MATERIAL AND METHODS: Ethylene-vinyl acetate samples, 4 mm thick, were randomly assigned to cleaning methods: control (C-no cleaning), brushing with water (B.W), brushing with neutral liquid soap (B.S), brushing with toothpaste (B.T), immersion in distilled water for 10 min (I.W), immersion in 2.25% sodium hypochlorite solution for 10 min (I.SH), and immersion in sodium bicarbonate solution for 5 min (I.SB). All cleaning methods were applied for 28 days. Surface roughness average (Ra) and wettability were measured at baseline for the control group (n = 9), and after cleaning for all the other groups. RESULTS: One-way ANOVA with Tukey tests (5% significance) indicated significant differences among groups (p < .05). The I.SB group had higher surface roughness than B.S and B.T (p < .05). B.W showed the lowest wettability, significantly lower than B.T, I.W, and I.SB (p < .05). I.SB exhibited the highest wettability, significantly different from sodium hypochlorite, neutral liquid soap, brushing with water, and control groups (p < .05). The sodium bicarbonate immersion group (I.SB) demonstrated greater statistical variation, displaying higher susceptibility to aging compared to brushing with neutral liquid soap. CONCLUSION: Cleaning mouthguards with a toothbrush, water, and neutral liquid soap emerged as the most promising method, causing minimal surface changes in the material.


Assuntos
Protetores Bucais , Propriedades de Superfície , Escovação Dentária , Desinfetantes , Hipoclorito de Sódio/farmacologia , Humanos , Bicarbonato de Sódio , Sabões , Cremes Dentais , Molhabilidade , Fatores de Tempo , Polivinil
2.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500223

RESUMO

Green propolis may represent a promising therapeutic alternative against dental anaerobic pathogens because of its antimicrobial action. This study aimed to evaluate the antimicrobial and antibiofilm actions of Brazilian green propolis aqueous extract (BGP-AqExt) against dental anaerobic bacteria. The minimum inhibitory concentration (MIC) and minimum microbicide concentration (MMC) of the extract were determined against the standard strains (ATCC) of Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Porphyromonas gingivalis and Porphyromonas endodontalis. BGP-AqExt was chemically characterized by high-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis. Antibiofilm action was measured by MTT and crystal violet tests. The data were statistically analyzed by ANOVA and Tukey (5%) tests. The extract had antimicrobial action against all tested anaerobic bacteria, with an MIC value of 55 mg/mL for all bacteria, an MMC of 27.5 mg/mL for F. nucleatum and P. micra and 55 mg/mL for P. intermedia. Chemically, BGP-AqExt is composed of quercetin, gallic acid, caffeic and p-coumaric acid, drupani, kaempferol and Artepillin C. Significant reductions in biomass and metabolic action of biofilms were found after BGP-AqExt application. Therefore, BGP-AqExt has an antimicrobial and antibiofilm effect against dental anaerobic bacteria.


Assuntos
Anti-Infecciosos , Própole , Própole/farmacologia , Própole/química , Bactérias Anaeróbias , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Porphyromonas gingivalis , Antibacterianos/farmacologia
3.
Dent J (Basel) ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35049601

RESUMO

BACKGROUND: Orofacial injuries are common occurrences during contact sports activities. However, there is an absence of data regarding the performance of hybrid occlusal splint mouthguards (HMG), especially during compressive loading. This study amid to evaluate the biomechanical effects of wearing a conventional custom mouthguard (MG) or the HMG on the teeth, bone, and the device itself. METHODS: To evaluate the total deformation and stress concentration, a skull model was selected and duplicated to receive two different designs of mouthguard device: one model received a MG with 4-mm thickness and the other received a novel HMG with the same thickness. Both models were subdivided into finite elements. The frictionless contacts were used, and a nonlinear analysis was performed simulating the compressive loading in occlusion. RESULTS: The results were presented in von-Mises stress maps (MPa) and total deformation (mm). A higher stress concentration in teeth was observed for the model with the conventional MG, while the HMG design displayed a promising mechanical response with lower stress magnitude. The HMG design displayed a higher magnitude of stress on its occlusal portion (7.05 MPa) than the MG design (6.19 MPa). CONCLUSION: The hybrid mouthguard (HMG) reduced (1) jaw displacement during chewing and (2) the generated stresses in maxillary and mandibular teeth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA