RESUMO
Commonly isolated from plants of Celastraceae family, pentacyclic triterpenoids have a broad spectrum of biological activities, such as antitumor, anti-inflammatory, antinociceptive properties, among others. Structural modifications in these triterpenoids can enhance their biological activity, as well as their selectivity, while improving their physicochemical and pharmacokinetic aspects. In this study, eight novel esters were synthesized: four derivatives of 3α-friedelinol (friedelan-3α-yl p-bromobenzoate (1a); friedelan-3α-yl naproxenate (1b); friedelan-3α-yl pent-4-ynoate (1c); friedelan-3α-yl undec-10-ynoate (1d)) and four derivatives of 3ß-friedelinol (friedelan-3ß-yl p-bromobenzoate (2a); friedelan-3ß-yl naproxenate (2b); friedelan-3ß-yl pent-4-ynoate (2c); friedelan-3ß-yl undec-10-ynoate (2d)). Overall, 3α-friedelinol showed greater reactivity when compared to the ß-epimer. The esters 1b-d and 2b-c were tested for antileukemic activity against THP-1 and K-562 cells but showed low cytotoxicity for both cell lines. The most active against THP-1 cells was friedelan-3ß-yl naproxenate (2b, IC50=266±6â µM), and the most active against K-562 cells was friedelan-3α-yl pent-4-ynoate (1c, IC50=267±5â µM).
Assuntos
Ésteres , Triterpenos , Humanos , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Estrutura MolecularRESUMO
Magonia pubescens A. St.-Hil. is a Brazilian species often used in ethnopharmacology for wound and pain healing and seborrhea treatment. For the first time, essential oils (EOs) obtained from M. pubescens inflorescences were studied. The plant materials (Montes Claros, Brazil, 2018) were submitted to different gamma-radiation doses and their chemical compositions were analyzed by GC/MS and GC-FID. The cytotoxic activity of the EOs was evaluated against K562 and MDA-MB-231 cancer cell lines. A total of 30 components were identified, being 24 compounds detected for the first time in M. pubescens. The main obtained components were hotrienol (35.9 %), cis-linalool oxide (17.0 %) and trans-linalool oxide (10.2 %). The chemical composition of the EO was slightly affected by the applied radiation doses. Irradiated and non-irradiated EOs showed cytotoxic activity against both cell lines and the non-irradiated EO sample was the most active against the K562â cell lines (IC50 =22.10±1.98).
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Sapindaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificaçãoRESUMO
Extracts and compounds obtained from several species of Celastraceae family are reported as potential sources of drugs due to their diverse pharmacological properties. Nevertheless, essential oil composition from these species is still little known. This work aimed at the analysis of essential oils obtained from different Brazilian Celastraceae species. A total of seventeen oils were obtained using hydrodistillation process and analyzed by gas chromatography/mass spectrometry (GC/MS). Principal component analysis (PCA) allowed the identification of a chemical composition pattern among the analyzed essential oils. Some compounds were more frequent among Celastraceae species, such as cis- and trans-linalool oxide (14/17 oil samples), nerylacetone (13/17), linalool (11/17), ß-ionone (10/17), α-ionone (9/17), nerolidol (10/17), decanal (10/17), and dodecanoic acid (10/17). These results contribute to the chemophenetics of Celastraceae species.