Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 135(2): 305-325, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33480424

RESUMO

A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.


Assuntos
Antivirais/farmacologia , Glutamina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Hospedeiro-Patógeno , Humanos , Neoplasias/metabolismo , Neoplasias/virologia , Virulência/efeitos dos fármacos , Vírus/efeitos dos fármacos , Vírus/patogenicidade
2.
Cell Physiol Biochem ; 53(1): 200-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287628

RESUMO

BACKGROUND/AIMS: Skeletal mass loss is reported in several catabolic conditions and it has been associated with a reduced intracellular L-glutamine content. We investigated the association of intracellular L-glutamine concentration with the protein content in skeletal muscle cells. METHODS: We cultivated C2C12 myotubes in the absence or presence of 2 (reference condition), 8 or 16 mM L-glutamine for 48 hours, and the variations in the contents of amino acids and proteins measured. We used an inhibitor of L-glutamine synthesis (L-methionine sulfoximine - MSO) to promote a further reduction in intracellular L-glutamine levels. Amino acids contents in cells and media were measured using LC-MS/MS. We measured changes in phosphorylated Akt, RP-S6, and 4E-BP1contents in the absence or presence of insulin by western blotting. RESULTS: Reduced intracellular L-glutamine concentration was associated with decreased protein content and increased protein breakdown. Low intracellular glutamine levels were also associated with decreased p-Akt contents in the presence of insulin. A further decrease in intracellular L-glutamine caused by glutamine synthetase inhibitor reduced protein content and levels of amino acids generated from glutamine metabolism and increased bAib still further. Cells exposed to high medium glutamine levels did not have any change in protein content but exhibited increased contents of the amino acids derived from L-glutamine metabolism. CONCLUSION: Intracellular L-glutamine levels per se play a role in the control of protein content in skeletal muscle myotubes.


Assuntos
Proteínas de Transporte/metabolismo , Glutamina/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/análise , Proteínas de Ciclo Celular , Linhagem Celular , Cromatografia Líquida , Fatores de Iniciação em Eucariotos , Glutamina/análise , Insulina/análise , Camundongos , Fibras Musculares Esqueléticas/química , Fosfoproteínas/análise , Fosforilação , Proteínas Proto-Oncogênicas c-akt/análise , Proteína S6 Ribossômica/análise , Espectrometria de Massas em Tandem
3.
High Blood Press Cardiovasc Prev ; 31(3): 321-327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735994

RESUMO

INTRODUCTION: Cardiac autonomic system functioning may be altered by obesity leading to cardiovascular diseases and associated complications. Military police officers are exposed to traditional and occupational risk factors for the development of CVD, however data on the cardiovascular health in this population is still scarce. AIM: In this cross-sectional study, we investigated the impact of obesity on cardiac autonomic modulation and the hemodynamic profile in male active-duty military police officers. METHODS: The body composition of the volunteers was assessed by octapolar electrical bioimpedance. Participants were classified as non-obese or obese in accordance with their body fat, with further subgroups as physically active obese or insufficiently active obese using International Physical Activity Questionnaire (IPAQ). Cardiac autonomic modulation was assessed by heart rate variability and the automatic oscillometric method allowed us to assess hemodynamic features. RESULTS: 102 military police officers from the state of São Paulo participated in the study. Cardiac autonomic modulation revealed significant impairment in time and frequency domains and non-linear methods in the obese group compared to the non-obese (p < 0.05). A higher physical activity level did not alter these results in the obese group. However, no significant differences in the hemodynamic profile were observed between groups (p > 0.05). CONCLUSION: These findings suggest a negative association between obesity and cardiac autonomic modulation in military police officers, unaffected by increased physical activity.


Assuntos
Sistema Nervoso Autônomo , Frequência Cardíaca , Obesidade , Polícia , Humanos , Masculino , Estudos Transversais , Sistema Nervoso Autônomo/fisiopatologia , Adulto , Obesidade/fisiopatologia , Obesidade/diagnóstico , Obesidade/epidemiologia , Brasil/epidemiologia , Coração/inervação , Coração/fisiopatologia , Saúde Ocupacional , Hemodinâmica , Saúde Militar , Adiposidade , Medição de Risco , Militares , Adulto Jovem
4.
J Nutr Biochem ; 70: 202-214, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31233980

RESUMO

L-Glutamine (L-Gln) supplementation has been pointed out as an anticatabolic intervention, but its effects on protein synthesis and degradation signaling in skeketal muscle are still poorly known. The effects of L-Gln pretreatment (1 g kg-1 day-1 body weight for 10 days) on muscle fiber cross-sectional area (CSA), amino acid composition (measured by LC-MS/MS) and protein synthesis (Akt-mTOR) and degradation (ubiquitin ligases) signaling in soleus and extensor digitorum longus (EDL) muscles in 24-h-fasted mice were investigated. The fiber CSA of EDL muscle was not different between the L-Gln-fasted and L-Gln-fed groups. This finding was associated with reduced contents of L-Leu and L-Iso and activation of protein synthesis signaling (p-RPS6Ser240/244 and Akt-mTOR). The spectrum of soleus muscle fiber CSA distribution was larger in L-Gln-fasted as compared with placebo-fasted mice. This effect of L-Gln pretreatment was associated with changes in red fibers L-Gln metabolism as indicated by increased intracellular L-glutamine/L-glutamate ratio, L-aspartate and GABA levels. L-Gln supplementation reduced fasting-induced mass loss in tibialis anterior and gastrocnemius muscles. Evidence is presented that pretreatment with L-glutamine attenuates skeletal muscle atrophy induced by 24-h fasting through mechanisms that vary with the muscle fiber type.


Assuntos
Jejum/efeitos adversos , Glutamina/administração & dosagem , Músculo Esquelético/patologia , Atrofia Muscular/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Administração Oral , Animais , Proteínas de Ciclo Celular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
5.
PLoS One ; 11(12): e0166687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27911915

RESUMO

The fatigue induced by marathon races was observed in terms of inflammatory and immunological outcomes. Neutrophil survival and activation are essential for inflammation resolution and contributes directly to the pathogenesis of many infectious and inflammatory conditions. The aim of this study was to investigate the effect of marathon races on surface molecules related to neutrophil adhesion and extrinsic apoptosis pathway and its association with inflammatory markers. We evaluated 23 trained male runners at the São Paulo International Marathon 2013. The following components were measured: hematological and inflammatory mediators, muscle damage markers, and neutrophil function. The marathon race induced an increased leukocyte and neutrophil counts; creatine kinase (CK), lactate dehydrogenase (LDH), CK-MB, interleukin (IL)-6, IL-10, and IL-8 levels. C-reactive protein (CRP), IL-12, and tumor necrosis factor (TNF)-α plasma concentrations were significantly higher 24 h and 72 h after the marathon race. Hemoglobin and hematocrit levels decreased 72 h after the marathon race. We also observed an increased intercellular adhesion molecule-1 (ICAM-1) expression and decreasedTNF receptor-1 (TNFR1) expression immediately after and 24 h after the marathon race. We observed an increased DNA fragmentation and L-selectin and Fas receptor expressions in the recovery period, indicating a possible slow rolling phase and delayed neutrophil activation and apoptosis. Marathon racing affects neutrophils adhesion and survival in the course of inflammation, supporting the "open-window" post-exercise hypothesis.


Assuntos
Antígenos de Superfície/sangue , Mediadores da Inflamação/sangue , Migração e Rolagem de Leucócitos , Ativação de Neutrófilo , Neutrófilos/metabolismo , Corrida , Adulto , Apoptose , Sobrevivência Celular , Citocinas/sangue , Humanos , Contagem de Leucócitos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA