Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Oncol ; 11: 668090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211843

RESUMO

Glioblastoma (GBM) is the most lethal and frequent type of brain tumor, leading patients to death in approximately 14 months after diagnosis. GBM treatment consists in surgical removal followed by radio and chemotherapy. However, tumors commonly relapse and the treatment promotes only a slight increase in patient survival. Thus, uncovering the cellular mechanisms involved in GBM resistance is of utmost interest, and the use of cell lines has been shown to be an extremely important tool. In this work, the exploration of RNAseq data from different GBM cell lines revealed different expression signatures, distinctly correlated with the behavior of GBM cell lines regarding proliferation indexes and radio-resistance. U87MG and U138MG cells, which presented expressively reduced proliferation and increased radio-resistance, showed a particular expression signature encompassing enrichment in many extracellular matrix (ECM) and receptor genes. Contrasting, U251MG and T98G cells, that presented higher proliferation and sensibility to radiation, exhibited distinct signatures revealing consistent enrichments for DNA repair processes and although several genes from the ECM-receptor pathway showed up-regulation, enrichments for this pathway were not detected. The ECM-receptor is a master regulatory pathway that is known to impact several cellular processes including: survival, proliferation, migration, invasion, and DNA damage signaling and repair, corroborating the associations we found. Furthermore, searches to The Cancer Genome Atlas (TCGA) repository revealed prognostic correlations with glioma patients for the majority of genes highlighted in the signatures and led to the identification of 31 ECM-receptor genes individually correlated with radiation responsiveness. Interestingly, we observed an association between the number of upregulated genes and survivability greater than 5 years after diagnosis, where almost all the patients that presented 21 or more upregulated genes were deceased before 5 years. Altogether our findings suggest the clinical relevance of ECM-receptor genes signature found here for radiotherapy decision and as biomarkers of glioma prognosis.

2.
J Proteomics ; 219: 103734, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201364

RESUMO

Epithelial to Mesenchymal Transition (EMT) is a normal cellular process that is also triggered during cancer progression and metastasis. EMT induces cellular and microenviromental changes, resulting in loss of epithelial features and acquisition of mesenchymal phenotypes. The growth factor TGFß and the transcription factor SNAIL1 (SNAIL) have been described as inducers of EMT. Here, we carried out an EMT model with non-tumorigenic cell line MCF-10A induced with the TGFß2 specific isoform of TGF protein family. The model was validated by molecular, morphological and functional experiments and showed correlation with the up-regulation of SNAIL. In order to identify additional regulators of EMT in this non-tumorigenic model, we explored quantitative proteomics, which revealed the Ubiquitin carboxyl-terminal hydrolase 47 (USP47) as one of the top up-regulated proteins. USP47 has a known role in cell growth and genome integrity, but not previously correlated to EMT. After validating USP47 alterations using MRM and antibody-based assays, we demonstrated that the chemical inhibition of USP47 with the inhibitor P5091 reduced expression of EMT markers and reverted morphological changes in MCF-10A cells undergoing EMT. These results support the involvement of USP47 in our EMT model as well as potential applications of deubiquitinases as therapeutic targets for cancer progression management. BIOLOGICAL SIGNIFICANCE: Metastasis is responsible for most cancer-associated mortality. Additionally, metastasis requires special attention, as the cellular transformations make treatment at this stage very difficult or occasionally impossible. Early steps in cancer metastasis involve the ability to detach from the solid tumor mass and invade the surrounding stromal tissues through cohesive migration, or a mesenchymal or amoeboid invasion. One of the first steps for metastatic cascade is denominated epithelial to mesenchymal transition (EMT), which can be triggered by different factors. Here, our efforts were directed to better understand this process and identify new pathways that contributes for acquisition of EMT, mainly focused on post translational modifications related to ubiquitin proteasome system. Our model of EMT induction by TGFß2 mimics early stage of metastatic cancer in epithelial breast cells and a proteomic study carried out for such model demonstrates that the deubiquitinase enzyme USP47 acts in SNAIL stabilization, one of the most important transcription factors for EMT phenotype acquisition and consequent metastasis. In addition, the inhibiton of USP47 with P5091, reverted the EMT phenotype. Together the knowledge of such processes of cancer progression and regulation can help in designing new strategies for combined therapies for control of cancer in early stages.


Assuntos
Transição Epitelial-Mesenquimal , Proteômica , Linhagem Celular Tumoral , Movimento Celular , Humanos , Invasividade Neoplásica , Fatores de Transcrição , Fator de Crescimento Transformador beta2 , Ubiquitina Tiolesterase , Proteases Específicas de Ubiquitina
3.
Front Oncol ; 9: 1100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788442

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer types. Metastasis, the main cause of death by cancer, can be promoted by an inflammatory microenvironment, which induces epithelial-mesenchymal transition (EMT) through a NF-κB-mediated stabilization of Snail. Here, we aimed to explore how microRNAs (miRs) can affect cell survival and EMT in HNSCC cells under an inflammatory microenvironment. By using a high-content screening (HCS) approach, we evaluated alterations in morphometric parameters, as well as expression/localization of Snail/Slug, in HNSCC cells primed with TNF-α. Based on those quantitation, we established the optimal experimental conditions of EMT induction driven by TNF-α. Those conditions were applied to cells transfected with distinct miRs (N = 31), followed by clusterization of miRs based on alterations related to cell survival and EMT. The signaling pathways enriched with molecular targets from each group of miRs were identified by in silico analyses. Finally, cells were transfected with siRNAs against signaling pathways targeted by miRs with anti-survival/EMT effect and evaluated for alterations in cell survival and EMT. Overall, we observed that TNF-α, at 20 ng/ml, induced EMT-related changes in cell morphology, Snail/Slug expression, and cell migration. Predicted targets of miRs with anti-survival/EMT effect were enriched with targets of NF-κB, PI3K/ATK, and Wnt/beta catenin pathways. Strikingly, individual gene silencing of elements from those pathways, namely RELA (NF-kB), AKT1 (PI3K/AKT), and CTNNB1 (Wnt/beta catenin) reduced cell survival and/or expression of Snail/Slug in cells stimulated with TNF-α. As a whole, our HCS approach allowed for the identification of miRs capable of inhibiting cell survival and EMT considering the presence of an inflammatory microenvironment, also indicating the common signaling pathways and molecular targets most likely to underlie those alterations. These findings may contribute to the development of targeted therapies against HNSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA