Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infection ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573472

RESUMO

PURPOSE: Rare yeasts species are increasingly reported as causative agents of invasive human infection. Proper identification and antifungal therapy are essential to manage these infections. Candida blankii is one of these emerging pathogens and is known for its reduced susceptibility to multiple antifungals. METHODS: To obtain more insight into the characteristics of this species, 26 isolates reported as C. blankii were investigated using genetic and phenotypical approaches. RESULTS: Among the 26 isolates, seven recovered either from blood, sputum, urine, or the oral cavity, displayed substantial genetic and some phenotypical differences compared to the other isolates, which were confirmed as C. blankii. We consider these seven strains to represent a novel species, Tardiomyces depauwii. Phylogenomics assigned C. blankii, C. digboiensis, and the novel species in a distinct branch within the order Dipodascales, for which the novel genus Tardiomyces is erected. The new combinations Tardiomyces blankii and Tardiomyces digboiensis are introduced. Differences with related, strictly environmental genera Sugiyamaella, Crinitomyces, and Diddensiella are enumerated. All three Tardiomyces species share the rare ability to grow up to 42 °C, display slower growth in nutrient-poor media, and show a reduced susceptibility to azoles and echinocandins. Characteristics of T. depauwii include high MIC values with voriconazole and a unique protein pattern. CONCLUSION: We propose the novel yeast species Tardiomyces depauwii and the transfer of C. blankii and C. digboiensis to the novel Tardiomyces genus.

2.
IMA Fungus ; 13(1): 4, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256015

RESUMO

Some members of Chaetothyriales, an order containing potential agents of opportunistic infections in humans, have a natural habitat in nests of tropical arboreal ants. In these black fungi, two types of ant symbiosis are known, i.e. occurrence in domatia inside living plants, or as components of carton constructions made of ant-chewed plant tissue. In order to explain differences between strains from these types of association, we sequenced and annotated genomes of two newly described carton species, Incumbomyces lentus and Incumbomyces delicatus, and compared these with genomes of four domatia species and related Chaetothyriales. General genomic characteristics, CYP genes, carbohydrate-active enzymes (CAZymes), secondary metabolism, and sex-related genes were included in the study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA