Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Biol ; 20(9): e3001776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103518

RESUMO

Introgression, endosymbiosis, and gene transfer, i.e., horizontal gene flow (HGF), are primordial sources of innovation in all domains of life. Our knowledge on HGF relies on detection methods that exploit some of its signatures left on extant genomes. One of them is the effect of HGF on branch lengths of constructed phylogenies. This signature has been formalized in statistical tests for HGF detection and used for example to detect massive adaptive gene flows in malaria vectors or to order evolutionary events involved in eukaryogenesis. However, these studies rely on the assumption that ghost lineages (all unsampled extant and extinct taxa) have little influence. We demonstrate here with simulations and data reanalysis that when considering the more realistic condition that unsampled taxa are legion compared to sampled ones, the conclusion of these studies become unfounded or even reversed. This illustrates the necessity to recognize the existence of ghosts in evolutionary studies.


Assuntos
Evolução Biológica , Fluxo Gênico , Genoma , Filogenia
2.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37879113

RESUMO

In phylogenomics, incongruences between gene trees, resulting from both artifactual and biological reasons, can decrease the signal-to-noise ratio and complicate species tree inference. The amount of data handled today in classical phylogenomic analyses precludes manual error detection and removal. However, a simple and efficient way to automate the identification of outliers from a collection of gene trees is still missing. Here, we present PhylteR, a method that allows rapid and accurate detection of outlier sequences in phylogenomic datasets, i.e. species from individual gene trees that do not follow the general trend. PhylteR relies on DISTATIS, an extension of multidimensional scaling to 3 dimensions to compare multiple distance matrices at once. In PhylteR, these distance matrices extracted from individual gene phylogenies represent evolutionary distances between species according to each gene. On simulated datasets, we show that PhylteR identifies outliers with more sensitivity and precision than a comparable existing method. We also show that PhylteR is not sensitive to ILS-induced incongruences, which is a desirable feature. On a biological dataset of 14,463 genes for 53 species previously assembled for Carnivora phylogenomics, we show (i) that PhylteR identifies as outliers sequences that can be considered as such by other means, and (ii) that the removal of these sequences improves the concordance between the gene trees and the species tree. Thanks to the generation of numerous graphical outputs, PhylteR also allows for the rapid and easy visual characterization of the dataset at hand, thus aiding in the precise identification of errors. PhylteR is distributed as an R package on CRAN and as containerized versions (docker and singularity).


Assuntos
Evolução Biológica , Filogenia
3.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36161327

RESUMO

Many layouts exist for visualizing phylogenetic trees, allowing to display the same information (evolutionary relationships) in different ways. For large phylogenies, the choice of the layout is a key element, because the printable area is limited, and because interactive on-screen visualizers can lead to unreadable phylogenetic relationships at high zoom levels. A visual inspection of available layouts for rooted trees reveals large empty areas that one may want to fill in order to use less drawing space and eventually gain readability. This can be achieved by using the nonlayered tidy tree layout algorithm that was proposed earlier but was never used in a phylogenetic context so far. Here, we present its implementation, and we demonstrate its advantages on simulated and biological data (the measles virus phylogeny). Our results call for the integration of this new layout in phylogenetic software. We implemented the nonlayered tidy tree layout in R language as a stand-alone function (available at https://github.com/damiendevienne/non-layered-tidy-trees), as an option in the tree plotting function of the R package ape, and in the recent tool for visualizing reconciled phylogenetic trees thirdkind (https://github.com/simonpenel/thirdkind/wiki).


Assuntos
Algoritmos , Software , Evolução Biológica , Filogenia
4.
Syst Biol ; 71(5): 1147-1158, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35169846

RESUMO

Most species are extinct, those that are not are often unknown. Sequenced and sampled species are often a minority of known ones. Past evolutionary events involving horizontal gene flow, such as horizontal gene transfer, hybridization, introgression, and admixture, are therefore likely to involve "ghosts," that is extinct, unknown, or unsampled lineages. The existence of these ghost lineages is widely acknowledged, but their possible impact on the detection of gene flow and on the identification of the species involved is largely overlooked. It is generally considered as a possible source of error that, with reasonable approximation, can be ignored. We explore the possible influence of absent species on an evolutionary study by quantifying the effect of ghost lineages on introgression as detected by the popular D-statistic method. We show from simulated data that under certain frequently encountered conditions, the donors and recipients of horizontal gene flow can be wrongly identified if ghost lineages are not taken into account. In particular, having a distant outgroup, which is usually recommended, leads to an increase in the error probability and to false interpretations in most cases. We conclude that introgression from ghost lineages should be systematically considered as an alternative possible, even probable, scenario. [ABBA-BABA; D-statistic; gene flow; ghost lineage; introgression; simulation.].


Assuntos
Fluxo Gênico , Hibridização Genética , Evolução Biológica , Fluxo Gênico/genética , Transferência Genética Horizontal , Filogenia
6.
PLoS Genet ; 15(2): e1007965, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707693

RESUMO

More than any other genome components, Transposable Elements (TEs) have the capacity to move across species barriers through Horizontal Transfer (HT), with substantial evolutionary consequences. Previous large-scale surveys, based on full-genomes comparisons, have revealed the transposition mode as an important predictor of HT rates variation across TE superfamilies. However, host biology could represent another major explanatory factor, one that needs to be investigated through extensive taxonomic sampling. Here we test this hypothesis using a field collection of 460 arthropod species from Tahiti and surrounding islands. Through targeted massive parallel sequencing, we uncover patterns of HT in three widely-distributed TE superfamilies with contrasted modes of transposition. In line with earlier findings, the DNA transposons under study (TC1-Mariner) were found to transfer horizontally at the highest frequency, closely followed by the LTR superfamily (Copia), in contrast with the non-LTR superfamily (Jockey), that mostly diversifies through vertical inheritance and persists longer within genomes. Strikingly, across all superfamilies, we observe a marked excess of HTs in Lepidoptera, an insect order that also commonly hosts baculoviruses, known for their ability to transport host TEs. These results turn the spotlight on baculoviruses as major potential vectors of TEs in arthropods, and further emphasize the importance of non-vertical TE inheritance in genome evolution.


Assuntos
Artrópodes/genética , Elementos de DNA Transponíveis , Lepidópteros/genética , Animais , Artrópodes/classificação , Baculoviridae/genética , Evolução Molecular , Transferência Genética Horizontal , Variação Genética , Genoma de Inseto , Lepidópteros/classificação , Lepidópteros/virologia , Modelos Genéticos , Filogenia , Polinésia
7.
Bioinformatics ; 36(4): 1286-1288, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31566657

RESUMO

SUMMARY: Here we present Zombi, a tool to simulate the evolution of species, genomes and sequences in silico, that considers for the first time the evolution of genomes in extinct lineages. It also incorporates various features that have not to date been combined in a single simulator, such as the possibility of generating species trees with a pre-defined variation of speciation and extinction rates through time, simulating explicitly intergenic sequences of variable length and outputting gene tree-species tree reconciliations. AVAILABILITY AND IMPLEMENTATION: Source code and manual are freely available in https://github.com/AADavin/ZOMBI/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Simulação por Computador , DNA Intergênico , Filogenia
8.
Mol Biol Evol ; 36(1): 174-176, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351416

RESUMO

Evolutionary Biologists are often faced with the need to compare phylogenetic trees. One popular method consists in visualizing the trees face to face with links connecting matching taxa. These tanglegrams are optimized beforehand so that the number of lines crossing (the entanglement) is minimal. This representation is implicitly justified by the expectation that the level of entanglement is correlated with the level of similarity (or congruence) between the trees compared. Using simulations, I show that this correlation is actually very weak, which should preclude the use of such technique for getting insight into the level of congruence between trees.


Assuntos
Técnicas Genéticas , Modelos Genéticos , Filogenia , Simulação por Computador
9.
PLoS Biol ; 14(12): e2001624, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28005907

RESUMO

The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.


Assuntos
Evolução Biológica , Filogenia , Internet , Interface Usuário-Computador
10.
BMC Evol Biol ; 18(1): 175, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458712

RESUMO

BACKGROUND: The distinction between lineages of neotropical bats from the Pteronotus parnellii species complex has been previously made according to mitochondrial DNA, and especially morphology and acoustics, in order to separate them into two species. In these studies, either sample sizes were too low when genetic and acoustic or morphological data were gathered on the same individuals, or genetic and other data were collected on different individuals. In this study, we intensively sampled bats in 4 caves and combined all approaches in order to analyse genetic, morphologic, and acoustic divergence between these lineages that live in the same caves in French Guiana. RESULTS: A multiplex of 20 polymorphic microsatellite markers was developed using the 454-pyrosequencing technique to investigate for the first time the extent of reproductive isolation between the two lineages and the population genetic structure within lineages. We genotyped 748 individuals sampled between 2010 and 2015 at the 20 nuclear microsatellite loci and sequenced a portion of the cytochrome c oxydase I gene in a subset of these. Two distinct, non-overlapping haplogroups corresponding to cryptic species P. alitonus and P. rubiginosus were revealed, in accordance with previous findings. No spatial genetic structure between caves was detected for both species. Hybridization appeared to be quite limited (0.1-4%) using microsatellite markers whereas introgression was more common (7.5%) and asymmetric for mitochondrial DNA (mtDNA). CONCLUSIONS: The extremely low rate of hybridization could be explained by differences in life cycle phenology between species as well as morphological and acoustical distinction between sexes in one or the other species. Taken together, these results add to our growing understanding of the nature of species boundaries in Pteronotus parnelli, but deserve more in-depth studies to understand the evolutionary processes underlying asymmetric mtDNA introgression in this group of cryptic species.


Assuntos
Acústica , Quirópteros/genética , Ecossistema , Simpatria/fisiologia , Animais , Núcleo Celular/genética , Quirópteros/anatomia & histologia , Ecolocação , Guiana Francesa , Genótipo , Repetições de Microssatélites/genética , Reprodução , Especificidade da Espécie
11.
Mol Ecol ; 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30030861

RESUMO

The competitive exclusion principle postulates that different species can only coexist in sympatry if they occupy distinct ecological niches. The goal of this study was to understand the geographical distribution of three species of Microbotryum anther-smut fungi that are distantly related but infect the same host plants, the sister species Silene vulgaris and S. uniflora, in Western Europe. We used microsatellite markers to investigate pathogen distribution in relation to host specialization and ecological factors. Microbotryum violaceo-irregulare was only found on S. vulgaris at high elevations in the Alps. Microbotryum lagerheimii could be subdivided into two genetically differentiated clusters, one on S. uniflora in the UK and the second on S. vulgaris in the Alps and Pyrenees. The most abundant pathogen species, M. silenes-inflatae, could be subdivided into four genetic clusters, co-occurring in the Alps, the UK and the Pyrenees, and was found on both S. vulgaris and S. uniflora. All three fungal species had high levels of homozygosity, in agreement with the selfing mating system generally observed in anther-smut fungi. The three pathogen species and genetic clusters had large range overlaps, but occurred at sites with different elevations, temperatures and precipitation levels. The three Microbotryum species thus do not appear to be maintained by host specialization or geographic allopatry, but instead may occupy different ecological niches in terms of environmental conditions.

12.
Mol Biol Evol ; 33(8): 2170-2, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189556

RESUMO

Ribosomal proteins (r-proteins) are increasingly used as an alternative to ribosomal rRNA for prokaryotic systematics. However, their routine use is difficult because r-proteins are often not or wrongly annotated in complete genome sequences, and there is currently no dedicated exhaustive database of r-proteins. RiboDB aims at fulfilling this gap. This weekly updated comprehensive database allows the fast and easy retrieval of r-protein sequences from publicly available complete prokaryotic genome sequences. The current version of RiboDB contains 90 r-proteins from 3,750 prokaryotic complete genomes encompassing 38 phyla/major classes and 1,759 different species. RiboDB is accessible at http://ribodb.univ-lyon1.fr and through ACNUC interfaces.


Assuntos
Bases de Dados Factuais , Proteínas Ribossômicas/classificação , Sequência de Bases , Bases de Dados de Proteínas , Filogenia , Células Procarióticas/classificação , RNA Ribossômico , Ribossomos/classificação , Software
13.
Mol Biol Evol ; 32(4): 928-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534033

RESUMO

Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.


Assuntos
Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento , Recombinação Genética , Cromossomos Sexuais , Sequência de Bases , Elementos de DNA Transponíveis , Deleção de Genes , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
14.
Mol Ecol ; 23(4): 753-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24341913

RESUMO

Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well-identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.


Assuntos
Adaptação Biológica , Evolução Biológica , Fungos/genética , Especiação Genética , Elementos de DNA Transponíveis , Eucariotos/genética , Transferência Genética Horizontal , Genômica , Hibridização Genética , Isolamento Reprodutivo
15.
Mol Biol Evol ; 29(6): 1587-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22319162

RESUMO

Full genome data sets are currently being explored on a regular basis to infer phylogenetic trees, but there are often discordances among the trees produced by different genes. An important goal in phylogenomics is to identify which individual gene and species produce the same phylogenetic tree and are thus likely to share the same evolutionary history. On the other hand, it is also essential to identify which genes and species produce discordant topologies and therefore evolve in a different way or represent noise in the data. The latter are outlier genes or species and they can provide a wealth of information on potentially interesting biological processes, such as incomplete lineage sorting, hybridization, and horizontal gene transfers. Here, we propose a new method to explore the genomic tree space and detect outlier genes and species based on multiple co-inertia analysis (MCOA), which efficiently captures and compares the similarities in the phylogenetic topologies produced by individual genes. Our method allows the rapid identification of outlier genes and species by extracting the similarities and discrepancies, in terms of the pairwise distances, between all the species in all the trees, simultaneously. This is achieved by using MCOA, which finds successive decomposition axes from individual ordinations (i.e., derived from distance matrices) that maximize a covariance function. The method is freely available as a set of R functions. The source code and tutorial can be found online at http://phylomcoa.cgenomics.org.


Assuntos
Genes Fúngicos , Filogenia , Software , Animais , Simulação por Computador , Fungos/genética , Genes , Marcadores Genéticos , Genômica , Modelos Genéticos , RNA Ribossômico/genética
16.
Elife ; 122023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278068

RESUMO

The accidental endogenization of viral elements within eukaryotic genomes can occasionally provide significant evolutionary benefits, giving rise to their long-term retention, that is, to viral domestication. For instance, in some endoparasitoid wasps (whose immature stages develop inside their hosts), the membrane-fusion property of double-stranded DNA viruses have been repeatedly domesticated following ancestral endogenizations. The endogenized genes provide female wasps with a delivery tool to inject virulence factors that are essential to the developmental success of their offspring. Because all known cases of viral domestication involve endoparasitic wasps, we hypothesized that this lifestyle, relying on a close interaction between individuals, may have promoted the endogenization and domestication of viruses. By analyzing the composition of 124 Hymenoptera genomes, spread over the diversity of this clade and including free-living, ecto, and endoparasitoid species, we tested this hypothesis. Our analysis first revealed that double-stranded DNA viruses, in comparison with other viral genomic structures (ssDNA, dsRNA, ssRNA), are more often endogenized and domesticated (that is, retained by selection) than expected from their estimated abundance in insect viral communities. Second, our analysis indicates that the rate at which dsDNA viruses are endogenized is higher in endoparasitoids than in ectoparasitoids or free-living hymenopterans, which also translates into more frequent events of domestication. Hence, these results are consistent with the hypothesis that the endoparasitoid lifestyle has facilitated the endogenization of dsDNA viruses, in turn, increasing the opportunities of domestications that now play a central role in the biology of many endoparasitoid lineages.


Assuntos
Vírus , Vespas , Animais , Feminino , Evolução Biológica , DNA , Domesticação , Genoma Viral , Vírus/genética , Vespas/genética
17.
Syst Biol ; 60(6): 826-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21804094

RESUMO

Phylogenies are fundamental to comparative biology as they help to identify independent events on which statistical tests rely. Two groups of phylogenetic comparative methods (PCMs) can be distinguished: those that take phylogenies into account by introducing explicit models of evolution and those that only consider phylogenies as a statistical constraint and aim at partitioning trait values into a phylogenetic component (phylogenetic inertia) and one or multiple specific components related to adaptive evolution. The way phylogenetic information is incorporated into the PCMs depends on the method used. For the first group of methods, phylogenies are converted into variance-covariance matrices of traits following a given model of evolution such as Brownian motion (BM). For the second group of methods, phylogenies are converted into distance matrices that are subsequently transformed into Euclidean distances to perform principal coordinate analyses. Here, we show that simply taking the elementwise square root of a distance matrix extracted from a phylogenetic tree ensures having a Euclidean distance matrix. This is true for any type of distances between species (patristic or nodal) and also for trees harboring multifurcating nodes. Moreover, we illustrate that this simple transformation using the square root imposes less geometric distortion than more complex transformations classically used in the literature such as the Cailliez method. Given the Euclidean nature of the elementwise square root of phylogenetic distance matrices, the positive semidefinitiveness of the phylogenetic variance-covariance matrix of a trait following a BM model, or related models of trait evolution, can be established. In that way, we build a bridge between the two groups of statistical methods widely used in comparative analysis. These results should be of great interest for ecologists and evolutionary biologists performing statistical analyses incorporating phylogenies.


Assuntos
Classificação/métodos , Filogenia , Simulação por Computador
18.
Fungal Genet Biol ; 45(6): 791-802, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346919

RESUMO

In this review on fungal speciation, we first contrast the issues of species definition and species criteria and show that by distinguishing the two concepts the approaches to studying the speciation can be clarified. We then review recent developments in the understanding of modes of speciation in fungi. Allopatric speciation raises no theoretical problem and numerous fungal examples exist from nature. We explain the theoretical difficulties raised by sympatric speciation, review the most recent models, and provide some natural examples consistent with speciation in sympatry. We describe the nature of prezygotic and postzygotic reproductive isolation in fungi and examine their evolution as functions of temporal and of the geographical distributions. We then review the theory and evidence for roles of cospeciation, host shifts, hybridization, karyotypic rearrangement, and epigenetic mechanisms in fungal speciation. Finally, we review the available data on the genetics of speciation in fungi and address the issue of speciation in asexual species.


Assuntos
Fungos/genética , Especiação Genética , Cromossomos Fúngicos , Epigênese Genética , Evolução Molecular , Fungos/isolamento & purificação , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Especificidade da Espécie
19.
Bioinformatics ; 23(23): 3119-24, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17933852

RESUMO

MOTIVATION: Phylogenetic trees are omnipresent in evolutionary biology and the comparison of trees plays a central role there. Tree congruence statistics are based on the null hypothesis that two given trees are not more congruent (topologically similar) than expected by chance. Usually, one searches for the most parsimonious evolutionary scenario relating two trees and then one tests the null hypothesis by generating a high number of random trees and comparing these to the one between the observed trees. However, this approach requires a lot of computational work (human and machine) and the results depend on the evolutionary assumptions made. RESULTS: We propose an index, I(cong), for testing the topological congruence between trees with any number of leaves, based on maximum agreement subtrees (MAST). This index is straightforward, simple to use, does not rely on parametrizing the likelihood of evolutionary events, and provides an associated confidence level. AVAILABILITY: A web site has been created that allows rapid and easy online computation of this index and of the associated P-value at http://www.ese.u-psud.fr/bases/upresa/pages/devienne/index.html


Assuntos
Algoritmos , Evolução Biológica , Genética Populacional , Interações Hospedeiro-Parasita/genética , Modelos Genéticos , Filogenia , Animais , Simulação por Computador , Humanos
20.
Nat Commun ; 9(1): 2000, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784936

RESUMO

Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.


Assuntos
Cromossomos Fúngicos/genética , Evolução Molecular , Fungos/genética , Genes Fúngicos Tipo Acasalamento , Fungos/classificação , Fungos/fisiologia , Genômica , Filogenia , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA