Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(16): 2850-2859, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36948582

RESUMO

Antidepressants, while effective in treating depression and anxiety disorders, also induce deficits in sensory (particularly auditory) processing, which in turn may exacerbate psychiatric symptoms. How antidepressants cause auditory signature deficits remains largely unknown. Here, we found that fluoxetine-treated adult female rats were significantly less accurate when performing a tone-frequency discrimination task compared with age-matched control rats. Their cortical neurons also responded less selectively to sound frequencies. The degraded behavioral and cortical processing was accompanied by decreased cortical perineuronal nets, particularly those wrapped around parvalbumin-expressing inhibitory interneurons. Furthermore, fluoxetine induced critical period-like plasticity in their already mature auditory cortices; therefore, a brief rearing of these drug-treated rats under an enriched acoustic environment renormalized auditory processing degraded by fluoxetine. The altered cortical expression of perineuronal nets was also reversed as a result of enriched sound exposure. These findings suggest that the adverse effects of antidepressants on auditory processing, possibly because of a reduction in intracortical inhibition, can be substantially alleviated by simply pairing drug treatment with passive, enriched sound exposure. They have important implications for understanding the neurobiological basis of antidepressant effects on hearing and for designing novel pharmacological treatment strategies for psychiatric disorders.SIGNIFICANCE STATEMENT Clinical experience suggests that antidepressants adversely affect sensory (particularly auditory) processing, which can exacerbate patients' psychiatric symptoms. Here, we show that the antidepressant fluoxetine reduces cortical inhibition in adult rats, leading to degraded behavioral and cortical spectral processing of sound. Importantly, fluoxetine induces a critical period-like state of plasticity in the mature cortex; therefore, a brief rearing under an enriched acoustic environment is sufficient to reverse the changes in auditory processing caused by the administration of fluoxetine. These results provide a putative neurobiological basis for the effects of antidepressants on hearing and indicate that antidepressant treatment combined with enriched sensory experiences could optimize clinical outcomes.


Assuntos
Córtex Auditivo , Fluoxetina , Ratos , Feminino , Animais , Fluoxetina/farmacologia , Percepção Auditiva/fisiologia , Som , Córtex Auditivo/fisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Estimulação Acústica/métodos
2.
Proc Natl Acad Sci U S A ; 116(52): 26329-26331, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843881

RESUMO

Sensory experience during early developmental critical periods (CPs) has profound and long-lasting effects on cortical sensory processing perduring well into adulthood. Although recent evidence has shown that reducing cortical inhibition during adulthood reinstates CP plasticity, the precise cellular mechanisms are not well understood. Here, we show that chemogenetic inactivation of parvalbumin-positive (PV+) interneurons is sufficient to reinstate CP plasticity in the adult auditory cortex. Bidirectional manipulation of PV+ cell activity affected neuronal spectral and sound intensity selectivity and, in the case of PV+ interneuron inactivation, was mirrored by anatomical changes in PV and associated perineuronal net expression. These findings underscore the importance of sustained PV-mediated inhibitory neurotransmission throughout life and highlight the potential of chemogenetic approaches for harnessing cortical plasticity with the ultimate goal of aiding recovery from brain injury or disease.

3.
J Neurosci ; 40(11): 2259-2268, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32024780

RESUMO

Frequency discrimination learning is often accompanied by an expansion of the functional region corresponding to the target frequency within the auditory cortex. Although the perceptual significance of this plastic functional reorganization remains debated, greater cortical representation is generally thought to improve perception for a stimulus. Recently, the ability to expand functional representations through passive sound experience has been demonstrated in adult rats, suggesting that it may be possible to design passive sound exposures to enhance specific perceptual abilities in adulthood. To test this hypothesis, we exposed adult female Long-Evans rats to 2 weeks of moderate-intensity broadband white noise followed by 1 week of 7 kHz tone pips, a paradigm that results in the functional over-representation of 7 kHz within the adult tonotopic map. We then tested the ability of exposed rats to identify 7 kHz among distractor tones on an adaptive tone discrimination task. Contrary to our expectations, we found that map expansion impaired frequency discrimination and delayed perceptual learning. Rats exposed to noise followed by 15 kHz tone pips were not impaired at the same task. Exposed rats also exhibited changes in auditory cortical responses consistent with reduced discriminability of the exposure tone. Encouragingly, these deficits were completely recovered with training. Our results provide strong evidence that map expansion alone does not imply improved perception. Rather, plastic changes in frequency representation induced by bottom-up processes can worsen perceptual faculties, but because of the very nature of plasticity these changes are inherently reversible.SIGNIFICANCE STATEMENT The potent ability of our acoustic environment to shape cortical sensory representations throughout life has led to a growing interest in harnessing both passive sound experience and operant perceptual learning to enhance mature cortical function. We use sound exposure to induce targeted expansions in the adult rat tonotopic map and find that these bottom-up changes unexpectedly impair performance on an adaptive tone discrimination task. Encouragingly, however, we also show that training promotes the recovery of electrophysiological measures of reduced neural discriminability following sound exposure. These results provide support for future neuroplasticity-based treatments that take into account both the sensory statistics of our external environment and perceptual training strategies to improve learning and memory in the adult auditory system.


Assuntos
Estimulação Acústica/efeitos adversos , Córtex Auditivo/fisiologia , Transtornos da Percepção/etiologia , Discriminação da Altura Tonal/fisiologia , Animais , Mapeamento Encefálico/métodos , Condicionamento Operante/fisiologia , Feminino , Plasticidade Neuronal , Ruído , Transtornos da Percepção/fisiopatologia , Transtornos da Percepção/reabilitação , Ratos , Ratos Long-Evans , Recompensa
4.
Neuroimage ; 238: 118222, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058330

RESUMO

We present a novel method to map the functional organization of the human auditory cortex noninvasively using magnetoencephalography (MEG). More specifically, this method estimates via reverse correlation the spectrotemporal receptive fields (STRF) in response to a temporally dense pure tone stimulus, from which important spectrotemporal characteristics of neuronal processing can be extracted and mapped back onto the cortex surface. We show that several neuronal populations can be found examining the spectrotemporal characteristics of their STRFs, and demonstrate how these can be used to generate tonotopic gradient maps. In doing so, we show that the spatial resolution of MEG is sufficient to reliably extract important information about the spatial organization of the auditory cortex, while enabling the analysis of complex temporal dynamics of auditory processing such as best temporal modulation rate and response latency given its excellent temporal resolution. Furthermore, because spectrotemporally dense auditory stimuli can be used with MEG, the time required to acquire the necessary data to generate tonotopic maps is significantly less for MEG than for other neuroimaging tools that acquire BOLD-like signals.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Magnetoencefalografia/métodos , Estimulação Acústica , Adulto , Percepção Auditiva/fisiologia , Dominância Cerebral , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurônios/fisiologia , Adulto Jovem
5.
Cereb Cortex ; 29(3): 1032-1046, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420680

RESUMO

The prolonged masking of auditory inputs with white noise has been shown to reopen the critical period for spectral tuning in the adult rat auditory cortex. Here, we argue that the masking of salient temporal inputs in particular is responsible for changes in neuronal activity that lead to this experience-dependent plasticity. We tested this hypothesis by passively exposing adult rats to 2 weeks of amplitude-modulated (AM) white noise with different modulation depths from 0% (no modulation) to 100% (strong modulation). All exposed rats displayed evidence of cortical plasticity as measured by receptive field bandwidths, tonotopic gradients, and synchronization during spontaneous activity. However, this plasticity was fundamentally different in nature for rats exposed to unmodulated noise, as a second passive exposure to pure tones elicited tonotopic reorganization in rats exposed to 0% AM noise only. Detection of c-FOS expression in excitatory and inhibitory cells through post-mortem immunohistochemistry also revealed different patterns of cellular activation depending on modulation depth. Together, these results indicate that the absence of temporal modulation promotes noise-induced plasticity in the adult auditory cortex and suggest an important and continuous role for temporally salient inputs in the maintenance of mature auditory circuits.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Período Crítico Psicológico , Plasticidade Neuronal , Ruído , Mascaramento Perceptivo/fisiologia , Estimulação Acústica , Animais , Feminino , Ratos Long-Evans , Fatores de Tempo
6.
Neural Plast ; 2016: 1801979, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057359

RESUMO

We used the rat primary auditory cortex (A1) as a model to probe the effects of cholinergic enhancement on perceptual learning and auditory processing mechanisms in both young and old animals. Rats learned to perform a two-tone frequency discrimination task over the course of two weeks, combined with either the administration of a cholinesterase inhibitor or saline. We found that while both age groups learned the task more quickly through cholinergic enhancement, the young did so by improving target detection, whereas the old did so by inhibiting erroneous responses to nontarget stimuli. We also found that cholinergic enhancement led to marked functional and structural changes within A1 in both young and old rats. Importantly, we found that several functional changes observed in the old rats, particularly those relating to the processing and inhibition of nontargets, produced cortical processing features that resembled those of young untrained rats more so than those of older adult rats. Overall, these findings demonstrate that combining auditory training with neuromodulation of the cholinergic system can restore many of the auditory cortical functional deficits observed as a result of normal aging and add to the growing body of evidence demonstrating that many age-related perceptual and neuroplastic changes are reversible.


Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Inibidores da Colinesterase/farmacologia , Aprendizagem por Discriminação/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Rivastigmina/farmacologia
7.
Proc Natl Acad Sci U S A ; 108(45): 18465-70, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025710

RESUMO

Serotonin (5-HT) plays a key role in early brain development, and manipulation of 5-HT levels during this period can have lasting neurobiological and behavioral consequences. It is unclear how perinatal exposure to drugs, such as selective serotonin reuptake inhibitors (SSRIs), impacts cortical neural network function and what mechanism(s) may elicit the disruption of normal neuronal connections/interactions. In this article, we report on cortical wiring organization after pre- and postnatal exposure to the SSRI citalopram. We show that manipulation of 5-HT during early development in both in vitro and in vivo models disturbs characteristic chemoarchitectural and electrophysiological brain features, including changes in raphe and callosal connections, sensory processing, and myelin sheath formation. Also, drug-exposed rat pups exhibit neophobia and disrupted juvenile play behavior. These findings indicate that 5-HT homeostasis is required for proper brain maturation and that fetal/infant exposure to SSRIs should be examined in humans, particularly those with developmental dysfunction, such as autism.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Córtex Cerebral/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Feminino , Homeostase , Imuno-Histoquímica , Masculino , Ratos , Serotonina/metabolismo
8.
JMIR Res Protoc ; 13: e59705, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116435

RESUMO

BACKGROUND: Our current understanding of how computerized brain training drives cognitive and functional benefits remains incomplete. This paper describes the protocol for Improving Neurological Health in Aging via Neuroplasticity-based Computerized Exercise (INHANCE), a randomized controlled trial in healthy older adults designed to evaluate whether brain training improves cholinergic signaling. OBJECTIVE: INHANCE evaluates whether 2 computerized training programs alter acetylcholine binding using the vesicular acetylcholine transporter ligand [18F] fluoroethoxybenzovesamicol ([18F] FEOBV) and positron emission tomography (PET). METHODS: In this phase IIb, prospective, double-blind, parallel-arm, active-controlled randomized trial, a minimum of 92 community-dwelling healthy adults aged 65 years and older are randomly assigned to a brain training program designed using the principles of neuroplasticity (BrainHQ by Posit Science) or to an active control program of computer games designed for entertainment (eg, Solitaire). Both programs consist of 30-minute sessions, 7 times per week for 10 weeks (35 total hours), completed remotely at home using either loaned or personal devices. The primary outcome is the change in FEOBV binding in the anterior cingulate cortex, assessed at baseline and posttest. Exploratory cognitive and behavioral outcomes sensitive to acetylcholine are evaluated before, immediately after, and 3 months following the intervention to assess the maintenance of observed effects. RESULTS: The trial was funded in September 2019. The study received approval from the Western Institutional Review Board in October 2020 with Research Ethics Board of McGill University Health Centre and Health Canada approvals in June 2021. The trial is currently ongoing. The first participant was enrolled in July 2021, enrollment closed when 93 participants were randomized in December 2023, and the trial will conclude in June 2024. The study team will be unblinded to conduct analyses after the final participant exits the study. We expect to publish the results in the fourth quarter of 2024. CONCLUSIONS: There remains a critical need to identify effective and scalable nonpharmaceutical interventions to enhance cognition in older adults. This trial contributes to our understanding of brain training by providing a potential neurochemical explanation of cognitive benefit. TRIAL REGISTRATION: ClinicalTrials.gov NCT04149457; https://clinicaltrials.gov/ct2/show/NCT04149457. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59705.


Assuntos
Plasticidade Neuronal , Humanos , Plasticidade Neuronal/fisiologia , Método Duplo-Cego , Idoso , Masculino , Feminino , Estudos Prospectivos , Envelhecimento/fisiologia , Envelhecimento/psicologia , Tomografia por Emissão de Pósitrons , Exercício Físico/fisiologia , Terapia por Exercício/métodos
9.
Sci Rep ; 14(1): 9082, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643273

RESUMO

Studying the oculomotor system provides a unique window to assess brain health and function in various clinical populations. Although the use of detailed oculomotor parameters in clinical research has been limited due to the scalability of the required equipment, the development of novel tablet-based technologies has created opportunities for fast, easy, cost-effective, and reliable eye tracking. Oculomotor measures captured via a mobile tablet-based technology have previously been shown to reliably discriminate between Parkinson's Disease (PD) patients and healthy controls. Here we further investigate the use of oculomotor measures from tablet-based eye-tracking to inform on various cognitive abilities and disease severity in PD patients. When combined using partial least square regression, the extracted oculomotor parameters can explain up to 71% of the variance in cognitive test scores (e.g. Trail Making Test). Moreover, using a receiver operating characteristics (ROC) analysis we show that eye-tracking parameters can be used in a support vector classifier to discriminate between individuals with mild PD from those with moderate PD (based on UPDRS cut-off scores) with an accuracy of 90%. Taken together, our findings highlight the potential usefulness of mobile tablet-based technology to rapidly scale eye-tracking use and usefulness in both research and clinical settings by informing on disease stage and cognitive outcomes.


Assuntos
Doença de Parkinson , Humanos , Movimentos Oculares , Cognição , Movimento , Gravidade do Paciente
10.
Epilepsia ; 54(12): 2048-59, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24117098

RESUMO

Temporal lobe epilepsy (TLE) is typically described as a neurologic disorder affecting a cerebral network comprising the hippocampus proper and several anatomically related extrahippocampal regions. A new level of complexity was recently added to the study of this disorder by the evidence that TLE also appears to chronically alter the activity of several brain-wide neural networks involved in the control of higher order brain functions and not traditionally linked to epilepsy. Recently developed brain imaging techniques such as functional magnetic resonance imaging (fMRI) analysis of resting state connectivity, have greatly contributed to these observations by allowing the precise characterization of several brain networks with distinct functional signatures in the resting brain, and therefore also known as "resting state networks." These significant advances in imaging represent an opportunity to investigate the still elusive origins of the disabling cognitive and psychiatric manifestations of TLE, and could have important implications for its pathophysiology and, perhaps, its therapy. Herein we review recent studies in this field by focusing on resting state networks that have been implicated in the pathophysiology of psychiatric disorders and cognitive impairment in patients with epilepsy: the default mode network, the attention network, and the reward/emotion network.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Rede Nervosa/fisiopatologia , Atenção/fisiologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Emoções/fisiologia , Função Executiva/fisiologia , Humanos , Vias Neurais/fisiopatologia , Recompensa
11.
Proc Natl Acad Sci U S A ; 107(33): 14839-44, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679210

RESUMO

Adult rats were trained to detect the occurrence of a two-element sound sequence in a background of nine other nontarget sound pairs. Training resulted in a modest, enduring, static expansion of the cortical areas of representation of both target stimulus sounds. More importantly, once the initial stimulus A in the target A-B sequence was presented, the cortical "map" changed dynamically, specifically to exaggerate further the representation of the "anticipated" stimulus B. If B occurred, it was represented over a larger cortical area by more strongly excited, more coordinated, and more selectively responding neurons. This biasing peaked at the expected time of B onset with respect to A onset. No dynamic biasing of responses was recorded for any sound presented in a nontarget pair. Responses to nontarget frequencies flanking the representation of B were reduced in area and in response strength only after the presentation of A at the expected time of B onset. This study shows that cortical areas are not representationally static but, to the contrary, can be biased moment by moment in time as a function of behavioral context.


Assuntos
Córtex Auditivo/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Som , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Comportamento Animal/fisiologia , Mapeamento Encefálico , Discriminação Psicológica/fisiologia , Feminino , Modelos Neurológicos , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 107(31): 13900-5, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643928

RESUMO

Cognitive decline is a virtually universal aspect of the aging process. However, its neurophysiological basis remains poorly understood. We describe here more than 20 age-related cortical processing deficits in the primary auditory cortex of aging versus young rats that appear to be strongly contributed to by altered cortical inhibition. Consistent with these changes, we recorded in old rats a decrease in parvalbumin-labeled inhibitory cortical neurons. Furthermore, old rats were slower to master a simple behavior, with learning progressions marked by more false-positive responses. We then examined the effect of intensive auditory training on the primary auditory cortex in these aged rats by using an oddball discrimination task. Following training, we found a nearly complete reversal of the majority of previously observed functional and structural cortical impairments. These findings suggest that age-related cognitive decline is a tightly regulated plastic process, and demonstrate that most of these age-related changes are, by their fundamental nature, reversible.


Assuntos
Envelhecimento , Córtex Auditivo/fisiologia , Comportamento Animal , Animais , Condicionamento Operante , Reações Falso-Positivas , Masculino , Ratos
13.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745532

RESUMO

Parvalbumin (PV) neurons play an integral role in regulating neural dynamics and plasticity. Therefore, understanding the factors that regulate PV expression is important for revealing modulators of brain function. While the contribution of PV neurons to neural processes has been studied in mammals, relatively little is known about PV function in non-mammalian species, and discerning similarities in the regulation of PV across species can provide insight into evolutionary conservation in the role of PV neurons. Here we investigated factors that affect the abundance of PV in PV neurons in sensory and motor circuits of songbirds and rodents. In particular, we examined the degree to which perineuronal nets (PNNs), extracellular matrices that preferentially surround PV neurons, modulate PV abundance as well as how the relationship between PV and PNN expression differs across brain areas and species and changes over development. We generally found that cortical PV neurons that are surrounded by PNNs (PV+PNN neurons) are more enriched with PV than PV neurons without PNNs (PV-PNN neurons) across both rodents and songbirds. Interestingly, the relationship between PV and PNN expression in the vocal portion of the basal ganglia of songbirds (Area X) differed from that in other areas, with PV+PNN neurons having lower PV expression compared to PV-PNN neurons. These relationships remained consistent across development in vocal motor circuits of the songbird brain. Finally, we discovered a causal contribution of PNNs to PV expression in songbirds because degradation of PNNs led to a diminution of PV expression in PV neurons. These findings in reveal a conserved relationship between PV and PNN expression in sensory and motor cortices and across songbirds and rodents and suggest that PV neurons could modulate plasticity and neural dynamics in similar ways across songbirds and rodents.

14.
Front Neurol ; 14: 1204733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396780

RESUMO

The idea that eye movements can reflect certain aspects of brain function and inform on the presence of neurodegeneration is not a new one. Indeed, a growing body of research has shown that several neurodegenerative disorders, such as Alzheimer's and Parkinson's Disease, present characteristic eye movement anomalies and that specific gaze and eye movement parameters correlate with disease severity. The use of detailed eye movement recordings in research and clinical settings, however, has been limited due to the expensive nature and limited scalability of the required equipment. Here we test a novel technology that can track and measure eye movement parameters using the embedded camera of a mobile tablet. We show that using this technology can replicate several well-known findings regarding oculomotor anomalies in Parkinson's disease (PD), and furthermore show that several parameters significantly correlate with disease severity as assessed with the MDS-UPDRS motor subscale. A logistic regression classifier was able to accurately distinguish PD patients from healthy controls on the basis of six eye movement parameters with a sensitivity of 0.93 and specificity of 0.86. This tablet-based tool has the potential to accelerate eye movement research via affordable and scalable eye-tracking and aid with the identification of disease status and monitoring of disease progression in clinical settings.

15.
Front Neurol ; 14: 1243594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745656

RESUMO

A growing body of evidence supports the link between eye movement anomalies and brain health. Indeed, the oculomotor system is composed of a diverse network of cortical and subcortical structures and circuits that are susceptible to a variety of degenerative processes. Here we show preliminary findings from the baseline measurements of an ongoing longitudinal cohort study in MS participants, designed to determine if disease and cognitive status can be estimated and tracked with high accuracy based on eye movement parameters alone. Using a novel gaze-tracking technology that can reliably and accurately track eye movements with good precision without the need for infrared cameras, using only an iPad Pro embedded camera, we show in this cross-sectional study that several eye movement parameters significantly correlated with clinical outcome measures of interest. Eye movement parameters were extracted from fixation, pro-saccade, anti-saccade, and smooth pursuit visual tasks, whereas the clinical outcome measures were the scores of several disease assessment tools and standard cognitive tests such as the Expanded Disability Status Scale (EDSS), Brief International Cognitive Assessment for MS (BICAMS), the Multiple Sclerosis Functional Composite (MSFC) and the Symbol Digit Modalities Test (SDMT). Furthermore, partial least squares regression analyses show that a small set of oculomotor parameters can explain up to 84% of the variance of the clinical outcome measures. Taken together, these findings not only replicate previously known associations between eye movement parameters and clinical scores, this time using a novel mobile-based technology, but also the notion that interrogating the oculomotor system with a novel eye-tracking technology can inform us of disease severity, as well as the cognitive status of MS participants.

16.
Front Neural Circuits ; 17: 1297643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179221

RESUMO

Parvalbumin (PV) neurons play an integral role in regulating neural dynamics and plasticity. Therefore, understanding the factors that regulate PV expression is important for revealing modulators of brain function. While the contribution of PV neurons to neural processes has been studied in mammals, relatively little is known about PV function in non-mammalian species, and discerning similarities in the regulation of PV across species can provide insight into evolutionary conservation in the role of PV neurons. Here we investigated factors that affect the abundance of PV in PV neurons in sensory and motor circuits of songbirds and rodents. In particular, we examined the degree to which perineuronal nets (PNNs), extracellular matrices that preferentially surround PV neurons, modulate PV abundance as well as how the relationship between PV and PNN expression differs across brain areas and species and changes over development. We generally found that cortical PV neurons that are surrounded by PNNs (PV+PNN neurons) are more enriched with PV than PV neurons without PNNs (PV-PNN neurons) across both rodents and songbirds. Interestingly, the relationship between PV and PNN expression in the vocal portion of the basal ganglia of songbirds (Area X) differed from that in other areas, with PV+PNN neurons having lower PV expression compared to PV-PNN neurons. These relationships remained consistent across development in vocal motor circuits of the songbird brain. Finally, we discovered a causal contribution of PNNs to PV expression in songbirds because degradation of PNNs led to a diminution of PV expression in PV neurons. These findings reveal a conserved relationship between PV and PNN expression in sensory and motor cortices and across songbirds and rodents and suggest that PV neurons could modulate plasticity and neural dynamics in similar ways across songbirds and rodents.


Assuntos
Matriz Extracelular , Parvalbuminas , Animais , Parvalbuminas/metabolismo , Matriz Extracelular/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Plasticidade Neuronal , Mamíferos/metabolismo
17.
J Neurosci ; 31(15): 5625-34, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21490203

RESUMO

Since its first description >40 years ago, the neurological "critical period" has been predominantly described as an early, plastic postnatal brain development stage that rather abruptly advances to an aplastic or less plastic "adult" stage. Here, we show that chronic exposure of juvenile or adult rats to moderate-level acoustic noise results in a broad reversal of maturational changes that mark the infant-to-adult progression in the primary auditory cortex. In time, noise exposure reinstates critical period plasticity. Cortical changes resulting from noise exposure are again reversed to reestablish a physically and functionally normal adult cortex, by returning animals to natural acoustic environments. These studies show that at least some of neurological changes believed to mark the transition from the infantile to the mature (adult) stage are, by their nature, reversible.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Período Crítico Psicológico , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Algoritmos , Animais , Western Blotting , Mapeamento Encefálico , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos , Meio Ambiente , Ensaio de Imunoadsorção Enzimática , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Ruído/efeitos adversos , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo
18.
Neurosci Bull ; 38(11): 1292-1302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35670954

RESUMO

Developmental exposure to bisphenol A (BPA), an endocrine-disrupting contaminant, impairs cognitive function in both animals and humans. However, whether BPA affects the development of primary sensory systems, which are the first to mature in the cortex, remains largely unclear. Using the rat as a model, we aimed to record the physiological and structural changes in the primary auditory cortex (A1) following lactational BPA exposure and their possible effects on behavioral outcomes. We found that BPA-exposed rats showed significant behavioral impairments when performing a sound temporal rate discrimination test. A significant alteration in spectral and temporal processing was also recorded in their A1, manifested as degraded frequency selectivity and diminished stimulus rate-following by neurons. These post-exposure effects were accompanied by changes in the density and maturity of dendritic spines in A1. Our findings demonstrated developmental impacts of BPA on auditory cortical processing and auditory-related discrimination, particularly in the temporal domain. Thus, the health implications for humans associated with early exposure to endocrine disruptors such as BPA merit more careful examination.


Assuntos
Compostos Benzidrílicos , Fenóis , Humanos , Ratos , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Percepção Auditiva/fisiologia , Neurônios/fisiologia
19.
Neuropharmacology ; 209: 109000, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182575

RESUMO

Hearing disorders, such as abnormal speech perception, are frequently reported in individuals with autism. However, the mechanisms underlying these auditory-associated signature deficits in autism remain largely unknown. In this study, we documented significant behavioral impairments in the sound temporal rate discrimination task for rats prenatally exposed to valproic acid (VPA), a well-validated animal model for studying the pathology of autism. In parallel, there was a large-scale degradation in temporal information-processing in their primary auditory cortices (A1) at both levels of spiking outputs and synaptic inputs. Substantially increased spine density of excitatory neurons and decreased numbers of parvalbumin- and somatostatin-labeled inhibitory inter-neurons were also recorded in the A1 after VPA exposure. Given the fact that cortical temporal processing of sound is associated with speech perception in humans, these results in the animal model of VPA exposure provide insight into a possible neurological mechanism underlying auditory and language-related deficits in individuals with autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Percepção do Tempo , Animais , Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ácido Valproico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA