Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 30(17): 30135-30148, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242123

RESUMO

We introduce a broadband coherent anti-Stokes Raman scattering (CARS) microscope based on a 2-MHz repetition rate ytterbium laser generating 1035-nm high-energy (≈µJ level) femtosecond pulses. These features of the driving laser allow producing broadband red-shifted Stokes pulses, covering the whole fingerprint region (400-1800 cm-1), employing supercontinuum generation in a bulk crystal. Our system reaches state-of-the-art acquisition speed (<1 ms/pixel) and unprecedented sensitivity of ≈14.1 mmol/L when detecting dimethyl sulfoxide in water. To further improve the performance of the system and to enhance the signal-to-noise ratio of the CARS spectra, we designed a convolutional neural network for spectral denoising, coupled with a post-processing pipeline to distinguish different chemical species of biological tissues.


Assuntos
Aprendizado Profundo , Análise Espectral Raman , Dimetil Sulfóxido , Água , Itérbio
2.
Opt Express ; 27(14): 19407-19417, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503700

RESUMO

Stimulated Raman scattering (SRS) allows chemical identification of substances based on their third-order nonlinear vibrational susceptibility χ(3)(ω). In its standard single-frequency implementation, SRS can only access the imaginary part of χ(3)(ω). Here we introduce interferometric SRS (iSRS), which has the capability to measure both the real and the imaginary parts of the nonlinear susceptibility. With respect to a standard SRS setup, iSRS simply requires the insertion of a few optical elements in the Stokes(pump) beam pathway to generate an intrinsically phase-coherent local oscillator. While preserving the acquisition speed and the simplicity of single-frequency SRS, iSRS considerably increases its information content by providing access to the vibrational phase, which allows one to distinguish overlapping species in congested spectra and is more robust with respect to noise.

3.
Biomed Opt Express ; 15(2): 491-505, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404303

RESUMO

Nonlinear microscopy encompasses several imaging techniques that leverage laser technology to probe intrinsic molecules of biological specimens. These native molecules produce optical fingerprints that allow nonlinear microscopes to reveal the chemical composition and structure of cells and tissues in a label-free and non-destructive fashion, information that enables a plethora of applications, e.g., real-time digital histopathology or image-guided surgery. Because state-of-the-art lasers exhibit either a limited bandwidth or reduced wavelength tunability, nonlinear microscopes lack the spectral support to probe different biomolecules simultaneously, thus losing analytical potential. Therefore, a conventional nonlinear microscope requires multiple or tunable lasers to individually excite endogenous molecules, increasing both the cost and complexity of the system. A solution to this problem is supercontinuum generation, a nonlinear optical phenomenon that supplies broadband femtosecond radiation, granting a wide spectrum for concurrent molecular excitation. This study introduces a source for nonlinear multiphoton microscopy based on the supercontinuum generation from a yttrium aluminum garnet (YAG) crystal, an approach that allows simultaneous label-free autofluorescence multi-harmonic imaging of biological samples and offers a practical and compact alternative for the clinical translation of nonlinear microscopy. While this supercontinuum covered the visible spectrum (550-900 nm) and the near-infrared region (950-1200 nm), the pulses within 1030-1150 nm produced label-free volumetric chemical images of ex vivo chinchilla kidney, thus validating the supercontinuum from bulk crystals as a powerful source for multimodal nonlinear microscopy.

4.
J Neurosci Methods ; 408: 110171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777156

RESUMO

BACKGROUND: Although the effects on neural activation and glucose consumption caused by opiates such as morphine are known, the metabolic machinery underlying opioid use and misuse is not fully explored. Multiphoton microscopy (MPM) techniques have been developed for optical imaging at high spatial resolution. Despite the increased use of MPM for neural imaging, the use of intrinsic optical contrast has seen minimal use in neuroscience. NEW METHOD: We present a label-free, multimodal microscopy technique for metabolic profiling of murine brain tissue following incubation with morphine sulfate (MSO4). We evaluate two- and three-photon excited autofluorescence, and second and third harmonic generation to determine meaningful intrinsic contrast mechanisms in brain tissue using simultaneous label-free, autofluorescence multi-harmonic (SLAM) microscopy. RESULTS: Regional differences quantified in the cortex, caudate, and thalamus of the brain demonstrate region-specific changes to metabolic profiles measured from FAD intensity, along with brain-wide quantification. While the overall intensity of FAD signal significantly decreased after morphine incubation, this metabolic molecule accumulated near the nucleus accumbens. COMPARISON WITH EXISTING METHODS: Histopathology requires tissue fixation and staining to determine cell type and morphology, lacking information about cellular metabolism. Tools such as fMRI or PET imaging have been widely used, but lack cellular resolution. SLAM microscopy obviates the need for tissue preparation, permitting immediate use and imaging of tissue with subcellular resolution in its native environment. CONCLUSIONS: This study demonstrates the utility of SLAM microscopy for label-free investigations of neural metabolism, especially the intensity changes in FAD autofluorescence and structural morphology from third-harmonic generation.


Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Morfina , Animais , Morfina/farmacologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos , Masculino , Analgésicos Opioides/farmacologia , Entorpecentes/farmacologia
5.
J Vis Exp ; (185)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35938835

RESUMO

Stimulated Raman scattering (SRS) microscopy is a nonlinear optical technique for label-free chemical imaging. This analytical tool delivers chemical maps at high speed, and high spatial resolution of thin samples by directly interrogating their molecular vibrations. In its standard implementation, SRS microscopy is narrowband and forms images with only a single vibrational frequency at a time. However, this approach not only hinders the chemical specificity of SRS but also neglects the wealth of information encoded within vibrational spectra. These limitations can be overcome by broadband SRS, an implementation capable of extracting a vibrational spectrum per pixel of the image in parallel. This delivers hyperspectral data that, when coupled with chemometric analysis, maximizes the amount of information retrieved from the specimen. Thus, broadband SRS improves the chemical specificity of the system, allowing the quantitative determination of the concentration of the different constituents of a sample. Here, we report a protocol for chemical imaging with broadband SRS microscopy, based on a home-built SRS microscope operating with a custom differential multichannel-lock-in amplifier detection. It discusses the sample preparation, alignment of the SRS apparatus, and chemometric analysis. By acquiring vibrational Raman spectra, the protocol illustrates how to identify different chemical species within a mixture, determining their relative concentrations.


Assuntos
Microscopia Óptica não Linear , Análise Espectral Raman , Microscopia , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Vibração
6.
Front Bioeng Biotechnol ; 10: 1042680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483771

RESUMO

Bone tissue features a complex microarchitecture and biomolecular composition, which determine biomechanical properties. In addition to state-of-the-art technologies, innovative optical approaches allowing the characterization of the bone in native, label-free conditions can provide new, multi-level insight into this inherently challenging tissue. Here, we exploited multimodal nonlinear optical (NLO) microscopy, including co-registered stimulated Raman scattering, two-photon excited fluorescence, and second-harmonic generation, to image entire vertebrae of murine spine sections. The quantitative nature of these nonlinear interactions allowed us to extract accurate biochemical, morphological, and topological information on the bone tissue and to highlight differences between normal and pathologic samples. Indeed, in a murine model showing bone loss, we observed increased collagen and lipid content as compared to the wild type, along with a decreased craniocaudal alignment of bone collagen fibres. We propose that NLO microscopy can be implemented in standard histopathological analysis of bone in preclinical studies, with the ambitious future perspective to introduce this technique in the clinical practice for the analysis of larger tissue sections.

7.
J Raman Spectrosc ; 51(10): 1951-1959, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33132486

RESUMO

We introduce a high-sensitivity broadband stimulated Raman scattering (SRS) setup featuring wide spectral coverage (up to 500 cm-1) and high-frequency resolution (≈20 cm-1). The system combines a narrowband Stokes pulse, obtained by spectral filtering an Yb laser, with a broadband pump pulse generated by a home-built optical parametric oscillator. A single-channel lock-in amplifier connected to a single-pixel photodiode measures the stimulated Raman loss signal, whose spectrum is scanned rapidly using a galvanometric mirror after the sample. We use the in-line balanced detection approach to suppress laser fluctuations and achieve close to shot-noise-limited sensitivity. The setup is capable of measuring accurately the SRS spectra of several solvents and of obtaining hyperspectral data cubes consisting in the broadband SRS microscopy images of polymer beads test samples as well as of the distribution of different biological substances within plant cell walls.

8.
Sci Rep ; 6: 33547, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27644587

RESUMO

An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz](2+) by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz](2+) in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a (3)MLCT state suggests that the [Ru(bpy)2dppz](2+) complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA