Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(13): 5636-5644, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709441

RESUMO

BACKGROUND: Yeast biomass, mainly composed of proteins and polysaccharides (mannans and ß-glucans), has been proposed to develop films. pH can affect the solubility of polysaccharides, the structure of the cell wall, and the interactions between proteins. Considering the potential impact of these effects, the pH of yeast film-forming dispersions was studied from 4 to 11. RESULTS: In tensile tests, samples increased their elongation by increasing pH, from 7 ± 2% (pH 4) to 29 ± 5% (pH 11), but Young's modulus was not significantly modified. Regarding thermal degradation, the maximum degradation rate temperature was shifted 46 °C from pH 4 to 11. Differences in water vapour permeability, colour, opacity, and roughness of films were also found. According to the results of differential protein solubility assay, hydrophobic interactions and hydrogen bonding were promoted at pH 4, but disulfide bonds were benefited at pH 11, in addition to partial ß-glucan dissolution and break-up of the alkali-sensitive linkage in molecules from the cell wall. CONCLUSION: The results lead to the conclusion that film-functional characteristics were greatly benefited at pH 11 in comparison with the regular pH of dispersion (pH 6). These results could help in understanding and selecting the pH conditions to enhance the desired properties of yeast biomass films. © 2021 Society of Chemical Industry.


Assuntos
Biopolímeros/química , Embalagem de Alimentos/instrumentação , Polissacarídeos/química , Saccharomyces cerevisiae/química , Biomassa , Fenômenos Biomecânicos , Biopolímeros/metabolismo , Módulo de Elasticidade , Concentração de Íons de Hidrogênio , Permeabilidade , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Solubilidade , Temperatura , Resistência à Tração
2.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611155

RESUMO

In the current contribution, bacterial nanocellulose obtained from a by-product of Kombucha tea production and vegetal nanocellulose isolated from milled rice husks were employed as fillers of PLA-based composites prepared by intensive mixing followed by compression molding. Given the challenges associated with the incorporation of nanocelluloses-initially obtained as aqueous suspensions-into melt compounding processes, and also with achieving a proper dispersion of the hydrophilic nanofillers within PLA, three different nanofibrils incorporation strategies were studied: i.e., direct mixing of dried milled nanocelluloses and PLA; masterbatching by solvent casting of native nanocelluloses followed by melt compounding; and masterbatching by solvent casting of acetylated nanocelluloses followed by melt compounding. Composites with varying filler content (from 0.5 wt.% to 7 wt.%) were characterized in terms of morphology, optical properties, and mechanical performance. Results revealed the relative suitability of each strategy employed to promote nanocelluloses dispersion within the PLA matrix. PLA/nanocellulose masterbatches prepared by solvent casting proved to be particularly useful for feeding the nanocelluloses into the processing equipment in a dry state with limited hornification. Acetylation also contributed to a better dispersion of both nanocelluloses within the PLA matrix, although no clear positive impact on the mechanical properties of the films was observed. Finally, filler loading played an important role in the films' properties by increasing their stiffness while reducing their translucency.

3.
Materials (Basel) ; 13(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168751

RESUMO

There is a strong public concern about plastic waste, which promotes the development of new biobased materials. The benefit of using microbial biomass for new developments is that it is a completely renewable source of polymers, which is not limited to climate conditions or may cause deforestation, as biopolymers come from vegetal biomass. The present review is focused on the use of microbial biomass and its derivatives as sources of biopolymers to form new materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with high promising properties for the development of biodegradable materials, while milk and water kefir grains, composed by kefiran and dextran, respectively, produce films with very good optical and mechanical properties. The reasons for considering microbial cellulose as an attractive biobased material are the conformational structure and enhanced properties compared to plant cellulose. Kombucha tea, a probiotic fermented sparkling beverage, produces a floating membrane that has been identified as bacterial cellulose as a side stream during this fermentation. The results shown in this review demonstrated the good performance of microbial biomass to form new materials, with enhanced functional properties for different applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA