Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biol Rep ; 48(1): 363-370, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33319323

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by a mutation in the IDUA gene, which codes α-L-iduronidase (IDUA), a lysosomal hydrolase that degrades two glycosaminoglycans (GAGs): heparan sulfate (HS) and dermatan sulfate (DS). GAGs are macromolecules found mainly in the extracellular matrix and have important signaling and structural roles which are essential to the maintenance of cell and tissue physiology. Nondegraded GAGs accumulate in various cell types, which characterizes MPS I as a multisystemic progressive disease. Many tissues and vital organs have been described in MPS I models, but there is a lack of studies focused on their effects on the reproductive tract. Our previous studies indicated lower sperm production and morphological damage in the epididymis and accessory glands in male MPS I mice, despite their ability to copulate and to impregnate females. Our aim was to improve the testicular characterization of the MPS I model, with a specific focus on ultrastructural observation of the different cell types that compose the seminiferous tubules and interstitium. We investigated the testicular morphology of 6-month-old male C57BL/6 wild-type (Idua+/+) and MPS I (Idua-/-) mice. We found vacuolated cells widely present in the interstitium and important signs of damage in myoid, Sertoli and Leydig cells. In the cytoplasmic region of Sertoli cells, we found an increased number of vesicles with substrates under digestion and a decreased number of electron-dense vesicles similar to lysosomes, suggesting an impaired flux of substrate degradation. Conclusions: Idua exerts an important role in the morphological maintenance of the seminiferous tubules and the testicular interstitium, which may influence the quality of spermatogenesis, having a greater effect with the progression of the disease.


Assuntos
Glicosaminoglicanos/genética , Doenças por Armazenamento dos Lisossomos/genética , Mucopolissacaridose I/genética , Células de Sertoli/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Células Intersticiais de Cajal/metabolismo , Células Intersticiais de Cajal/patologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Camundongos , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Mutação/genética , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
2.
Ecotoxicol Environ Saf ; 209: 111766, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348257

RESUMO

The management of agrochemicals in Brazilian agriculture impacts global environmental sustainability and food security, since this country is one of the major agro-food exporters in the world. Acephate, carbendazim, and dithiocarbamates (DTCs) such as mancozeb, are among the most detected agrochemicals in Brazilian agro-food products, occurring in combination in several crops, especially in fruit cultures. The present study evaluated the impact of the exposure to isolated agrochemicals and all the combined possible mixtures (binary and ternary forms) on the reproductive parameters of male juvenile rats, known to be a vulnerable biological system and developmental window. Data were analyzed using Generalized Linear Models (GzLM), considering each agrochemical as an independent factor. The study revealed higher reproductive toxicity exerted by isolated agrochemicals when compared to the combined treatments, which exhibited mostly an antagonistic effect. Results suggest endocrine disruptive effects of each one separately on the weight of reproductive organs and testicular histomorphometry, besides changes in testicular SOD activity. The full factorial experimental design employed here allowed us to conclude that it is not possible to scale-up the effects of the isolated treatments to the mixtures, showing how difficult it is to know beforehand the response and cross-talk among the multiple physiological mechanisms disturbed by complex mixtures. Considering that food products are shared on a global scale and that some of these three agrochemicals have already been prohibited in EU countries, the consumption of some Brazilian products puts global human health at risk, that of children.


Assuntos
Agroquímicos/toxicidade , Disruptores Endócrinos/toxicidade , Animais , Brasil , Misturas Complexas , Modelos Lineares , Masculino , Ratos , Testes de Toxicidade
3.
Reprod Fertil Dev ; 32(3): 304-312, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31679559

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by a deficiency of the lysosomal hydrolase, α-L-iduronidase (IDUA). IDUA degrades heparan and dermatan sulfates, two types of glycosaminoglycan (GAG), important signalling and structural molecules of the extracellular matrix. Because many cell types store GAGs, MPS I has been investigated in human and animal models. Enzyme replacement therapy is available for MPS I patients and has improved their life expectancy, allowing them to achieve reproductive age. The aim of this study was to evaluate epididymal and sperm morphology and function in a murine model of MPS I. We used C57BL Idua+/+ and Idua-/- adult male mice (6 months old) to investigate epididymal morphology, sperm ultrastructure, GAG characterisation and mating competence. Epithelial GAG storage, especially in the cauda epididymidis, was seen in Idua-/- mice. Regardless of the morphologic change and GAG storage found in the cauda epididymis, sperm morphology and motility were normal, similar to wild types. In the interstitium, vacuolated cells were found in addition to deposits of GAGs. Mating was not impaired in Idua-/- males and litter sizes were similar between groups. At the time point of the disease evaluated, the deficiency in IDUA affected the morphology of the epididymis in male Idua-/- mice, whereas sperm appearance and motility and the male's capacity to mate and impregnate females were preserved.


Assuntos
Colágeno/metabolismo , Epididimo/metabolismo , Glicosaminoglicanos/metabolismo , Mucopolissacaridose I/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Epididimo/ultraestrutura , Fertilização , Iduronidase/deficiência , Iduronidase/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Espermatozoides/ultraestrutura
4.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093427

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of ß-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Catepsina B/metabolismo , Córtex Cerebral/metabolismo , Mucopolissacaridose I/metabolismo , Células Piramidais/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Catepsina B/genética , Córtex Cerebral/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Células Piramidais/patologia
5.
Front Mol Biosci ; 8: 773384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869599

RESUMO

Background: Lysosomal storage diseases (LSDs) are caused by a mutation in a specific gene. Enzymatic dysfunction results in a progressive storage of substrates that gradually affects lysosomal, cellular and tissue physiology. Their pathophysiological consequences vary according to the nature of the stored substrate, making LSDs complex and multisystemic diseases. Some LSDs result in near normal life expectancies, and advances in treatments mean that more people reach the age to have children, so considering the effects of LSDs on fertility and the risks associated with having children is of growing importance. Objectives: As there is a lack of clinical studies describing the effect of LSDs on the physiology of reproductivity, we undertook a scoping review of studies using animal models of LSDs focusing on reproductive parameters. Methods: We searched six databases: MEDLINE, LILACS, Scopus, Web of Science, Embase and SciELO, and identified 49 articles that met our inclusion criteria. Results: The majority of the studies used male animal models, and a number reported severe morphological and physiological damage in gametes and gonads in models of sphingolipidoses. Models of other LSDs, such as mucopolysaccharidoses, presented important morphological damage. Conclusion: Many of the models found alterations in reproductive systems. Any signs of subfertility or morphological damage in animal models are important, particularly in rodents which are extremely fertile, and may have implications for individuals with LSDs. We suggest the use of more female animal models to better understand the physiopathology of the diseases, and the use of clinical case studies to further explore the risks of individuals with LSDs having children.

6.
Acta Histochem ; 123(2): 151678, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33434858

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by alpha-L-iduronidase (IDUA) deficiency, an enzyme responsible for glycosaminoglycan degradation. Musculoskeletal impairment is an important component of the morbidity related to the disease, as it has a major impact on patients' quality of life. To understand how this disease affects bone structure, morphological, biomechanical and histological analyses of femurs from 3- and 6-month-old wild type (Idua +/+) and MPS I knockout mice (Idua -/-) were performed. Femurs from 3-month-old Idua -/- mice were found to be smaller and less resistant to fracture when compared to their age matched controls. In addition, at this age, the femurs presented important alterations in articular cartilage, trabecular bone architecture, and deposition of type I and III collagen. At 6 months of age, femurs from Idua -/- mice were more resistant to fracture than those from Idua +/+. Our results suggest that the abnormalities observed in bone matrix and articular cartilage in 3-month-old Idua -/- animals caused bone tissue to be less flexible and more likely to fracture, whereas in 6-month-old Idua -/- group the ability to withstand more load before fracturing than wild type animals is possibly due to changes in the bone matrix.


Assuntos
Iduronidase/metabolismo , Mucopolissacaridose I/metabolismo , Mucopolissacaridose I/patologia , Animais , Fenômenos Biomecânicos/fisiologia , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fêmur/enzimologia , Fêmur/metabolismo , Fêmur/patologia , Iduronidase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose I/enzimologia
7.
J Mol Histol ; 51(2): 137-145, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32162173

RESUMO

Mucopolysaccharidosis type I (MPS I) is a genetic disease caused by a deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA). IDUA degrades two types of glycosaminoglycans (GAGs): heparan and dermatan sulfates, important components of extracellular matrix, with signaling and structural functions. The accumulation of GAGs results in progressive physiological impairments in a variety of tissues, making MPS I a complex and multisystemic disease. Due the advent of therapeutic strategies which have increased patients' life expectancy, our group have been investigating the effect of IDUA deficiency on the reproductive system. In the present study, we aimed to characterize some of the accessory glands of the male reproductive tract in an MPS I mouse model. We used 6-month-old Idua+/+ and Idua-/- male mice to evaluate the histology of the seminal vesicles and prostate. Interstitial deposits of GAGs and collagen fibers were also observed. Seminal vesicles were smaller in the Idua-/- group, regardless of the normal staining pattern of the epithelial cells, marked with antiandrogen receptor. The prostate of Idua-/- mice presented necrotic acini and increased deposition of collagen fibers in the interstitium. All glands presented evident deposits of GAGs in the extracellular matrix, especially inside vacuolated interstitial cells. We concluded that, at this stage of the disease, the prostate is the most damaged accessory gland and may therefore, be the first to manifest functional impairments during disease progression.


Assuntos
Genitália Masculina/patologia , Mucopolissacaridose I/patologia , Animais , Biomarcadores , Biópsia , Modelos Animais de Doenças , Genitália Masculina/metabolismo , Iduronidase/deficiência , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Mucopolissacaridose I/etiologia , Mucopolissacaridose I/metabolismo , Próstata/metabolismo , Próstata/patologia , Glândulas Seminais/metabolismo , Glândulas Seminais/patologia
8.
PLoS One ; 14(12): e0220429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834922

RESUMO

Mucopolysaccharidosis Type I (MPS I) is a rare genetic lysosomal storage disease caused by a mutation of IDUA gene. IDUA codes for α-L-iduronidase (IDUA), a lysosomal hydrolase that degrades glycosaminoglycans (GAGs): heparan sulphate and dermatan sulphate. GAGs are structural and signalling molecules that have a crucial role in controlling a variety of cell functions and their interaction with the extracellular matrix. Because of GAG's widespread action in cellular metabolism, MPS I is a progressive and disabling multisystemic disorder. Nowadays, the therapies available allowed patients to reach the adult life and the consequences of the disease in their reproductive system are mostly unknown. We aimed to investigate whether IDUA disruption influences sexual behaviour and sexual steroid production in male and female MPS I mice. We used 3 and 6-month-old male and 3-month-old female Idua+/_ and Idua-/- mice to evaluate typical rodent copulatory behaviours. In males we observed the frequency and latency of mounts, intromissions and ejaculations. In females, we evaluated the lordosis quotient. We also analysed the locomotor capacity of mice in the open field test, since mobility is essential for copulatory behaviour. We also quantified steroidal hormonal levels in plasmatic samples. We detected an increase in the latencies of intromissions in Idua-/- males when compared to Idua+/_. However, the number of intromissions was not statistically different between groups. No parameter of female sexual behaviour was statistically different between control and knockout females. In both sexes, we detected diminished mobility in Idua-/- mice. Plasma hormone levels did not differ between Idua+/_ and Idua-/- mice, both in males and females. Although the motor disability predicted to MPS I animals, we concluded that in the considered time point of MPS I progression studied, mice are able to perform sexual behaviour.


Assuntos
Iduronidase/genética , Mucopolissacaridose I/fisiopatologia , Comportamento Sexual/fisiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glicosaminoglicanos/metabolismo , Iduronidase/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transtornos Motores , Mucopolissacaridose I/genética , Mutação
9.
JIMD Rep ; 36: 109-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220405

RESUMO

Mucopolysaccharidosis type I (MPS I), a rare autosomal recessive disease, is caused by a deficiency of the lysosomal enzyme alfa-L-iduronidase. Impaired enzyme activity promotes glycosaminoglycans accumulation in several tissues and organs, leading to complex multisystemic complications. Several studies using animal models indicated different intracellular pathways involving MPS I physiopathology; however, the exact mechanisms underlying this syndrome are still not understood. Previous results from our group showed alterations in ionic homeostasis and cell viability of splenocytes and macrophages in Idua-/- mice. In the present study, we found altered intracellular ionic homeostasis in a different cell type (fibroblasts) from the same murine model. Idua-/- fibroblasts from 3-month-old mice presented higher cytoplasmatic and endoplasmic reticulum Ca2+ concentration, lower levels of mitochondrial Ca2+ and mitochondrial membrane potential and higher cytoplasmatic pH when compared to Idua+/+ animals. Also, Idua-/- fibroblasts were more resistant to the apoptotic induction with staurosporine, indicating a possible resistance to apoptotic induction in those cells. In addition, despite the intracellular ionic imbalance, no significant alterations were found in apoptosis and autophagy in Idua-/- fibroblasts, which implies that the ionic alterations did not activate those pathways. The investigation of mechanisms underlying the cellular physiopathology of lysosomal diseases is crucial for a better understanding about the progression of these diseases. Since splenocytes, macrophages, and fibroblasts have different embryonic origins and distinct structural and functional features, potentially altered signaling pathways found in a cell-specific manner in an alfa-L-iduronidase-deficient environment provide additional understanding of the clinical multisystemic presentation of this disease and provide new basis for improved therapeutic approaches.

10.
Artigo em Inglês | MEDLINE | ID: mdl-27708618

RESUMO

Non-coding RNAs (ncRNAs) are a functional class of RNA involved in the regulation of several cellular processes which may modulate disease onset, progression, and prognosis. Lysosomal storage diseases (LSD) are a group of rare disorders caused by mutations of genes encoding specific hydrolases or non-enzymatic proteins, characterized by a wide spectrum of manifestations. The alteration of ncRNA levels is well established in several human diseases such as cancer and auto-immune disorders; however, there is a lack of information focused on the role of ncRNA in rare diseases. Recent reports related to changes in ncRNA expression and its consequences on LSD physiopathology show us the importance to keep advancing in this field. This article will summarize recent findings and provide key points for further studies on LSD and ncRNA association.

11.
Int J Clin Exp Pathol ; 7(6): 3488-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25031781

RESUMO

Mucopolysaccharidosis (MPS) I is a lysosomal storage disorder (LSD) that is characterised by alpha-L-iduronidase (Idua) deficiency and continuous deposition of glycosaminoglycans (GAGs), which consequently interferes with cell signalling mechanisms and results in multisystemic and progressive symptoms. The animal model of MPS I (Idua-/-) has been widely studied to elucidate the consequences and progression of the disorder; however, studies specifically assessing the male reproductive tract are lacking. The aim of this study was to evaluate some of the reproductive characteristics of male MPS I mice in two phases of life. Reproductive organ biometry, sperm counts, sperm morphological evaluation, plasma testosterone measurements and histopathological, histomorphometrical and immunohistochemical analysis were performed in 3- and 6-month-old C57BL/6 Idua+/+ and Idua-/- mice. Seminal vesicle weights were decreased in both the 3- and 6-month-old Idua-/- mice. Decrease in sperm counts and the majority of the histopathological signs were observed in the 6-month-old Idua-/- mice. No differences were detected in the sperm morphological analysis. Immunohistochemistry revealed that seminiferous tubules from 3-month-old Idua-/- mice were more intensely stained with anti-caspase-3 than 3-month-old Idua+/+ mice, but no difference was found at 6 months. These results suggest that MPS I interferes with male reproductive parameters both in 3 and 6-month-old animals and histopathological signs are more pronounced in 6-month-old mice, indicating that the effects of the disorder may intensify with the disease progression.


Assuntos
Doenças dos Genitais Masculinos/etiologia , Doenças dos Genitais Masculinos/patologia , Genitália Masculina/patologia , Mucopolissacaridose I/complicações , Animais , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contagem de Espermatozoides , Espermatozoides/patologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA