RESUMO
Big data is central to new developments in global clinical science aiming to improve the lives of patients. Technological advances have led to the routine use of structured electronic healthcare records with the potential to address key gaps in clinical evidence. The covid-19 pandemic has demonstrated the potential of big data and related analytics, but also important pitfalls. Verification, validation, and data privacy, as well as the social mandate to undertake research are key challenges. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including patient representatives, clinicians, scientists, regulators, journal editors and industry. We propose the CODE-EHR Minimum Standards Framework as a means to improve the design of studies, enhance transparency and develop a roadmap towards more robust and effective utilisation of healthcare data for research purposes.
Assuntos
COVID-19 , Registros Eletrônicos de Saúde , COVID-19/epidemiologia , Atenção à Saúde , Eletrônica , Humanos , Pandemias/prevenção & controleRESUMO
BACKGROUND: Conservative management is an option for prostate cancer (PCa) patients either with the objective of delaying or even avoiding curative therapy, or to wait until palliative treatment is needed. PIONEER, funded by the European Commission Innovative Medicines Initiative, aims at improving PCa care across Europe through the application of big data analytics. OBJECTIVE: To describe the clinical characteristics and long-term outcomes of PCa patients on conservative management by using an international large network of real-world data. DESIGN, SETTING, AND PARTICIPANTS: From an initial cohort of >100 000 000 adult individuals included in eight databases evaluated during a virtual study-a-thon hosted by PIONEER, we identified newly diagnosed PCa cases (n = 527 311). Among those, we selected patients who did not receive curative or palliative treatment within 6 mo from diagnosis (n = 123 146). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Patient and disease characteristics were reported. The number of patients who experienced the main study outcomes was quantified for each stratum and the overall cohort. Kaplan-Meier analyses were used to estimate the distribution of time to event data. RESULTS AND LIMITATIONS: The most common comorbidities were hypertension (35-73%), obesity (9.2-54%), and type 2 diabetes (11-28%). The rate of PCa-related symptomatic progression ranged between 2.6% and 6.2%. Hospitalization (12-25%) and emergency department visits (10-14%) were common events during the 1st year of follow-up. The probability of being free from both palliative and curative treatments decreased during follow-up. Limitations include a lack of information on patients and disease characteristics and on treatment intent. CONCLUSIONS: Our results allow us to better understand the current landscape of patients with PCa managed with conservative treatment. PIONEER offers a unique opportunity to characterize the baseline features and outcomes of PCa patients managed conservatively using real-world data. PATIENT SUMMARY: Up to 25% of men with prostate cancer (PCa) managed conservatively experienced hospitalization and emergency department visits within the 1st year after diagnosis; 6% experienced PCa-related symptoms. The probability of receiving therapies for PCa decreased according to time elapsed after the diagnosis.
Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias da Próstata , Masculino , Adulto , Humanos , Big Data , Neoplasias da Próstata/terapia , Neoplasias da Próstata/diagnóstico , Intervalo Livre de Doença , Europa (Continente)RESUMO
This article provides methodological and technical considerations to researchers starting to develop computational model-based diagnostics using clinical chemistry data. These models are of increasing importance, since novel metabolomics and proteomics measuring technologies are able to produce large amounts of data that are difficult to interpret at first sight, but have high diagnostic potential. Computational models aid interpretation and make the data accessible for clinical diagnosis. We discuss the issues that a modeller has to take into account during the design, construction and evaluation phases of model development. We use the example of Particle Profiler development, a model-based diagnostic tool for lipoprotein disorders, as a case study, to illustrate our considerations. The case study also offers techniques for efficient model formulation, model calculation, workflow structuring and quality control.
Assuntos
Simulação por Computador , Diagnóstico , HumanosRESUMO
BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1â355â349 antihypertensive users (363â785 ACEI or ARB monotherapy users, 248â915 CCB or THZ monotherapy users, 711â799 ACEI or ARB combination users, and 473â076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.
RESUMO
Environmental DNA (eDNA) is used for monitoring the occurrence of freshwater organisms. Various studies show a relation between the amount of eDNA detected and target organism abundance, thus providing a potential proxy for reconstructing population densities. However, environmental factors such as water temperature and microbial activity are known to affect the amount of eDNA present as well. In this study, we use controlled aquarium experiments using Gammarus pulex L. (Amphipoda) to investigate the relationship between the amount of detectable eDNA through time, pH, and levels of organic material. We found eDNA to degrade faster when organic material was added to the aquarium water, but that pH had no significant effect. We infer that eDNA contained inside cells and mitochondria is extra resilient against degradation, though this may not reflect actual presence of target species. These results indicate that, although estimation of population density might be possible using eDNA, measured eDNA concentration could, in the future, be corrected for local environmental conditions in order to ensure accurate comparisons.
RESUMO
Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe (PIONEER) is a European network of excellence for big data in prostate cancer, consisting of 32 private and public stakeholders from 9 countries across Europe. Launched by the Innovative Medicines Initiative 2 and part of the Big Data for Better Outcomes Programme (BD4BO), the overarching goal of PIONEER is to provide high-quality evidence on prostate cancer management by unlocking the potential of big data. The project has identified critical evidence gaps in prostate cancer care, via a detailed prioritization exercise including all key stakeholders. By standardizing and integrating existing high-quality and multidisciplinary data sources from patients with prostate cancer across different stages of the disease, the resulting big data will be assembled into a single innovative data platform for research. Based on a unique set of methodologies, PIONEER aims to advance the field of prostate cancer care with a particular focus on improving prostate-cancer-related outcomes, health system efficiency by streamlining patient management, and the quality of health and social care delivered to all men with prostate cancer and their families worldwide.
Assuntos
Big Data , Pesquisa Biomédica , Neoplasias da Próstata , Humanos , MasculinoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
INTRODUCTION: Angiotensin converting enzyme inhibitors (ACEs) and angiotensin receptor blockers (ARBs) could influence infection risk of coronavirus disease (COVID-19). Observational studies to date lack pre-specification, transparency, rigorous ascertainment adjustment and international generalizability, with contradictory results. METHODS: Using electronic health records from Spain (SIDIAP) and the United States (Columbia University Irving Medical Center and Department of Veterans Affairs), we conducted a systematic cohort study with prevalent ACE, ARB, calcium channel blocker (CCB) and thiazide diuretic (THZ) use to determine relative risk of COVID-19 diagnosis and related hospitalization outcomes. The study addressed confounding through large-scale propensity score adjustment and negative control experiments. RESULTS: Following over 1.1 million antihypertensive users identified between November 2019 and January 2020, we observed no significant difference in relative COVID-19 diagnosis risk comparing ACE/ARB vs CCB/THZ monotherapy (hazard ratio: 0.98; 95% CI 0.84 - 1.14), nor any difference for mono/combination use (1.01; 0.90 - 1.15). ACE alone and ARB alone similarly showed no relative risk difference when compared to CCB/THZ monotherapy or mono/combination use. Directly comparing ACE vs. ARB demonstrated a moderately lower risk with ACE, non-significant for monotherapy (0.85; 0.69 - 1.05) and marginally significant for mono/combination users (0.88; 0.79 - 0.99). We observed, however, no significant difference between drug- classes for COVID-19 hospitalization or pneumonia risk across all comparisons. CONCLUSION: There is no clinically significant increased risk of COVID-19 diagnosis or hospitalization with ACE or ARB use. Users should not discontinue or change their treatment to avoid COVID-19.
RESUMO
Increased plasma cholesterol is a known risk factor for cardiovascular disease. Lipoprotein particles transport both cholesterol and triglycerides through the blood. It is thought that the size distribution of these particles codetermines cardiovascular disease risk. New types of measurements can determine the concentration of many lipoprotein size-classes but exactly how each small class relates to disease risk is difficult to clear up. Because relating physiological process status to disease risk seems promising, we propose investigating how lipoprotein production, lipolysis, and uptake processes depend on particle size. To do this, we introduced a novel model framework (Particle Profiler) and evaluated its feasibility. The framework was tested using existing stable isotope flux data. The model framework implementation we present here reproduced the flux data and derived lipoprotein size pattern changes that corresponded to measured changes. It also sensitively indicated changes in lipoprotein metabolism between patient groups that are biologically plausible. Finally, the model was able to reproduce the cholesterol and triglyceride phenotype of known genetic diseases like familial hypercholesterolemia and familial hyperchylomicronemia. In the future, Particle Profiler can be applied for analyzing detailed lipoprotein size profile data and deriving rates of various lipolysis and uptake processes if an independent production estimate is given.
Assuntos
Colesterol/sangue , Colesterol/química , Lipoproteínas/metabolismo , Modelos Biológicos , Colesterol/genética , Humanos , Lipoproteínas/sangue , Lipoproteínas/química , Tamanho da Partícula , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/metabolismoRESUMO
Biopharmaceutical industry R&D, and indeed other life sciences R&D such as biomedical, environmental, agricultural and food production, is becoming increasingly data-driven and can significantly improve its efficiency and effectiveness by implementing the FAIR (findable, accessible, interoperable, reusable) guiding principles for scientific data management and stewardship. By so doing, the plethora of new and powerful analytical tools such as artificial intelligence and machine learning will be able, automatically and at scale, to access the data from which they learn, and on which they thrive. FAIR is a fundamental enabler for digital transformation.
Assuntos
Gerenciamento de Dados , Indústria Farmacêutica , Produtos Biológicos , Pesquisa BiomédicaRESUMO
The availability of high-throughput molecular profiling techniques has provided more accurate and informative data for regular clinical studies. Nevertheless, complex computational workflows are required to interpret these data. Over the past years, the data volume has been growing explosively, requiring robust human data management to organise and integrate the data efficiently. For this reason, we set up an ELIXIR implementation study, together with the Translational research IT (TraIT) programme, to design a data ecosystem that is able to link raw and interpreted data. In this project, the data from the TraIT Cell Line Use Case (TraIT-CLUC) are used as a test case for this system. Within this ecosystem, we use the European Genome-phenome Archive (EGA) to store raw molecular profiling data; tranSMART to collect interpreted molecular profiling data and clinical data for corresponding samples; and Galaxy to store, run and manage the computational workflows. We can integrate these data by linking their repositories systematically. To showcase our design, we have structured the TraIT-CLUC data, which contain a variety of molecular profiling data types, for storage in both tranSMART and EGA. The metadata provided allows referencing between tranSMART and EGA, fulfilling the cycle of data submission and discovery; we have also designed a data flow from EGA to Galaxy, enabling reanalysis of the raw data in Galaxy. In this way, users can select patient cohorts in tranSMART, trace them back to the raw data and perform (re)analysis in Galaxy. Our conclusion is that the majority of metadata does not necessarily need to be stored (redundantly) in both databases, but that instead FAIR persistent identifiers should be available for well-defined data ontology levels: study, data access committee, physical sample, data sample and raw data file. This approach will pave the way for the stable linkage and reuse of data.
RESUMO
Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates.
Assuntos
Gorduras na Dieta/metabolismo , Ácido Linoleico/metabolismo , Lipólise , Lipoproteínas VLDL/metabolismo , Adulto , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais/análise , Método Duplo-Cego , Jejum , Ácidos Graxos/administração & dosagem , Ácidos Graxos/metabolismo , Humanos , Ácido Linoleico/administração & dosagem , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-IdadeRESUMO
Fibrates lower triglycerides and raise HDL cholesterol in dyslipidemic patients, but show heterogeneous treatment response. We used k-means clustering to identify three representative NMR lipoprotein profiles for 775 subjects from the GOLDN population, and study the response to fenofibrate in corresponding subgroups. The subjects in each subgroup showed differences in conventional lipid characteristics and in presence/absence of cardiovascular risk factors at baseline; there were subgroups with a low, medium and high degree of dyslipidemia. Modeling analysis suggests that the difference between the subgroups with low and medium dyslipidemia is influenced mainly by hepatic uptake dysfunction, while the difference between subgroups with medium and high dyslipidemia is influenced mainly by extrahepatic lipolysis disfunction. The medium and high dyslipidemia subgroups showed a positive, yet distinct lipid response to fenofibrate treatment. When comparing our subgroups to known subgrouping methods, we identified an additional 33% of the population with favorable lipid response to fenofibrate compared to a standard baseline triglyceride cutoff method. Compared to a standard HDL cholesterol cutoff method, the addition was 18%. In conclusion, by using constructing subgroups based on representative lipoprotein profiles, we have identified two subgroups of subjects with positive lipid response to fenofibrate therapy and with different underlying disturbances in lipoprotein metabolism. The total subgroup with positive lipid response to fenofibrate is larger than subgroups identified with baseline triglyceride and HDL cholesterol cutoffs.
Assuntos
Dislipidemias/tratamento farmacológico , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , Lipoproteínas/sangue , Análise por Conglomerados , Dislipidemias/sangue , Feminino , Humanos , Lipoproteínas/classificação , MasculinoRESUMO
The requirement of systems biology for connecting different levels of biological research leads directly to a need for integrating vast amounts of diverse information in general and of omics data in particular. The nutritional phenotype database addresses this challenge for nutrigenomics. A particularly urgent objective in coping with the data avalanche is making biologically meaningful information accessible to the researcher. This contribution describes how we intend to meet this objective with the nutritional phenotype database. We outline relevant parts of the system architecture, describe the kinds of data managed by it, and show how the system can support retrieval of biologically meaningful information by means of ontologies, full-text queries, and structured queries. Our contribution points out critical points, describes several technical hurdles. It demonstrates how pathway analysis can improve queries and comparisons for nutrition studies. Finally, three directions for future research are given.