RESUMO
Evaluation of fire severity reduction strategies requires the quantification of intervention outcomes and, more broadly, the extent to which fuel characteristics affect fire severity. However, investigations are currently limited by the availability of accurate data on fire severity predictors, particularly relating to fuel. Here, we used airborne LiDAR data collected before the 2019-20 Australian Black Summer fires to investigate the contribution of fuel structure to fire severity under a range of weather conditions. Fire severity was estimated using the Relative Burn Ratio calculated from Sentinel-2 optical remote sensing imagery. We modelled the effects of various fuel structure estimates and other environmental predictors using Random Forest models. In addition to variables estimated at each observation point, we investigated the influence of surrounding landscape characteristics using an innovative method to estimate fireline progression direction. Our models explained 63-76% of fire severity variance using parsimonious predictor sets. Fuel cover in the understorey and canopy, and vertical vegetation heterogeneity, were positively associated with fire severity. Up-fire burnt area and recent planned and unplanned fire reduced fire severity, whereby unplanned fire provided a longer-lasting reduction of fire severity (up to 15 years) than planned fire (up to 10 years). Although fuel structure and land management effects were important predictors, weather and canopy height effects were dominant. By mapping continuous interactions between weather and fuel-related variables, we found strong evidence of diminishing fuel effects below 20-40% relative air humidity. While our findings suggest that land management interventions can provide meaningful fire severity reduction, they also highlight the risk of warmer and drier future climates constraining these advantages.
Assuntos
Incêndios Florestais , Austrália , Tecnologia de Sensoriamento Remoto , Tempo (Meteorologia) , ClimaRESUMO
Realistic representation of hydrological drought events is increasingly important in world facing decreased freshwater availability. Index-based drought monitoring systems are often adopted to represent the evolution and distribution of hydrological droughts, which mainly rely on hydrological model simulations to compute these indices. Recent studies, however, indicate that model derived water storage estimates might have difficulties in adequately representing reality. Here, a novel Markov Chain Monte Carlo - Data Assimilation (MCMC-DA) approach is implemented to merge global Terrestrial Water Storage (TWS) changes from the Gravity Recovery And Climate Experiment (GRACE) and its Follow On mission (GRACE-FO) with the water storage estimations derived from the W3RA water balance model. The modified MCMC-DA derived summation of deep-rooted soil and groundwater storage estimates is then used to compute 0.5∘ standardized groundwater drought indices globally to show the impact of GRACE/GRACE-FO DA on a global index-based hydrological drought monitoring system. Our numerical assessment covers the period of 2003-2021, and shows that integrating GRACE/GRACE-FO data modifies the seasonality and inter-annual trends of water storage estimations. Considerable increases in the length and severity of extreme droughts are found in basins that exhibited multi-year water storage fluctuations and those affected by climate teleconnections.
RESUMO
We introduce Version 2 of our widely used 1-km Köppen-Geiger climate classification maps for historical and future climate conditions. The historical maps (encompassing 1901-1930, 1931-1960, 1961-1990, and 1991-2020) are based on high-resolution, observation-based climatologies, while the future maps (encompassing 2041-2070 and 2071-2099) are based on downscaled and bias-corrected climate projections for seven shared socio-economic pathways (SSPs). We evaluated 67 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and kept a subset of 42 with the most plausible CO2-induced warming rates. We estimate that from 1901-1930 to 1991-2020, approximately 5% of the global land surface (excluding Antarctica) transitioned to a different major Köppen-Geiger class. Furthermore, we project that from 1991-2020 to 2071-2099, 5% of the land surface will transition to a different major class under the low-emissions SSP1-2.6 scenario, 8% under the middle-of-the-road SSP2-4.5 scenario, and 13% under the high-emissions SSP5-8.5 scenario. The Köppen-Geiger maps, along with associated confidence estimates, underlying monthly air temperature and precipitation data, and sensitivity metrics for the CMIP6 models, can be accessed at www.gloh2o.org/koppen .
RESUMO
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling.
RESUMO
Access to water is a critical aspect of livestock production, although the relationship between livestock weight gain and water quality remains poorly understood. Previous work has shown that water quality of poorly managed farm dams can be improved by fencing and constructing hardened watering points to limit stock access to the dam, and revegetation to filter contaminant inflow. Here we use cattle weight gain data from three North American studies to develop a cost-benefit analysis for the renovation of farm dams to improve water quality and, in turn, promote cattle weight gain on farms in south-eastern Australia. Our analysis indicated a strong likelihood of positive results and suggested there may be substantial net economic benefit from renovating dams in poor condition to improve water quality. The average per-farm Benefit-Cost Ratios based on deterministic assumptions was 1.5 for New South Wales (NSW) and 3.0 for Victoria in areas where rainfall exceeds 600mm annually. Our analyses suggested that cattle on farms in NSW and Victoria would need to experience additional weight gain from switching to clean water of at least 6.5% and 1.8% per annum respectively, to break even in present value terms. Monte Carlo simulation based on conservative assumptions indicated that the probability of per-farm benefits exceeding costs was greater than 70%. We recommend localised experiments to assess the impact of improved water quality on livestock weight gain in Australian conditions to confirm these expectations empirically.
Assuntos
Indústria de Laticínios/métodos , Fazendas/normas , Gado/crescimento & desenvolvimento , Qualidade da Água/normas , Animais , Austrália , Bovinos , Análise Custo-Benefício , Fazendas/economia , Método de Monte Carlo , Aumento de PesoRESUMO
Dryland ecosystems are characterised by rainfall variability and strong vegetation response to changes in water availability over a range of timescales. Forecasting dryland vegetation condition can be of great value in planning agricultural decisions, drought relief, land management and fire preparedness. At monthly to seasonal time scales, knowledge of water stored in the system contributes more to predictability than knowledge of the climate system state. However, realising forecast skill requires knowledge of the vertical distribution of moisture below the surface and the capacity of the vegetation to access this moisture. Here, we demonstrate that contrasting satellite observations of water presence over different vertical domains can be assimilated into an eco-hydrological model and combined with vegetation observations to infer an apparent vegetation-accessible water storage (hereafter called accessible storage). Provided this variable is considered explicitly, skilful forecasts of vegetation condition are achievable several months in advance for most of the world's drylands.
RESUMO
An integrated understanding of the biogeochemical consequences of climate extremes and land use changes is needed to constrain land-surface feedbacks to atmospheric CO2 from associated climate change. Past assessments of the global carbon balance have shown particularly high uncertainty in Southeast Asia. Here, we use a combination of model ensembles to show that intensified land use change made Southeast Asia a strong source of CO2 from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s due to an enhanced CO2 fertilization effect and absence of moderate-to-strong El Niño events. Our findings suggest that despite ongoing deforestation, CO2 emissions were substantially decreased during the 2000s, largely owing to milder climate that restores photosynthetic capacity and suppresses peat and deforestation fire emissions. The occurrence of strong El Niño events after 2009 suggests that the region has returned to conditions of increased vulnerability of carbon stocks.
RESUMO
Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation.