Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(9): 6444-6463, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500445

RESUMO

During the transition phase, dairy cows are susceptible to develop postpartum diseases. Cows that stay healthy or recover rapidly can be considered to be more resilient in comparison to those that develop postpartum diseases. An indication of loss of resilience will allow for early intervention with preventive and supportive measures before the onset of disease. We investigated which quantitative behavioral characteristics during the dry period could be used as indicators of reduced resilience after calving, using noninvasive Smart Tag neck and Smart Tag leg sensors in dairy cows (Nedap N.V.). We followed 180 cows during 2 wk before until 6 wk after parturition at 4 farms in the Netherlands. Serving as proxy for loss of resilience, as defined by the duration and severity of disease, a clinical assessment was performed twice weekly and blood samples were taken in the first and fifth week after parturition. For each cow, clinical and serum value deviations were aggregated into a total deficit score (TDS total). We also calculated TDS values relating to inflammation, locomotion, or metabolic problems, which were further divided into macro-mineral and liver-related deviations. Smart Tag neck and leg sensors provided continuous behavioral activity signals of which we calculated the average, variance, and autocorrelation during the dry period. Diurnal patterns in the behavioral activity signals were derived by fast Fourier transformation and the calculation of the nonperiodicity. To select significant predictors of resilience, we first performed a univariate analysis with TDS as dependent variable and the behavioral characteristics that were measured during the dry period, as potential predictors with cow as experimental unit. We included parity group as fixed effect and farm as random effect. Next, we performed multivariable analysis with only significant predictors, followed by a variable selection procedure to obtain a final linear mixed model with an optimal subset of predictors with parity group as fixed effect and farm as random effect. The TDS total was best predicted by average inactive time, nonperiodicity ruminating, nonperiodicity of bouts standing up and fast Fourier transformation stand still. Average inactive time was negatively correlated with average eating time, and these 2 predictors could be exchanged with only little difference in model performance. Our best performing model predicted TDS total at a cutoff level of 60 points, with a sensitivity of 79.5% and a specificity of 73.2% with a positive predicted value of 0.69 and a negative predicted value of 0.83. The models to predict the other TDS categories showed a lower predictive performance as compared with the TDS total model, which could be related to the limited sample size and therefore, low occurrence of problems within a specific TDS category. Furthermore, more resilient dairy cows are characterized by high averages of eating time with high regularity in rumination and low averages of inactive time. They reveal high regularity in standing time and transitions from lying to standing, in the dry period. These behaviors can be used as indicators of resilience and allow for preventive intervention during the dry period in vulnerable dairy cattle. However, further examination is still required to find clues for adequate intervention strategies.


Assuntos
Período Pós-Parto , Transtornos Puerperais , Gravidez , Feminino , Bovinos , Animais , Período Pós-Parto/metabolismo , Lactação , Parto , Paridade , Ingestão de Alimentos , Transtornos Puerperais/veterinária , Leite/metabolismo
2.
J Dairy Sci ; 105(8): 7061-7078, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688732

RESUMO

The focus of this study was to identify the effects of increasing ambient temperature (T) at different relative humidity (RH) and air velocity (AV) levels on heat loss from the skin surface and through respiration of dairy cows. Twenty Holstein dairy cows with an average parity of 2.0 ± 0.7 and body weight of 687 ± 46 kg participated in the study. Two climate-controlled respiration chambers were used. The experimental indoor climate was programmed to follow a diurnal pattern with ambient T at night being 9°C lower than during the day. Night ambient T was gradually increased from 7 to 21°C and day ambient T was increased from 16 to 30°C within an 8-d period, both with an incremental change of 2°C per day. A diurnal pattern for RH was created as well, with low values during the day and high values during the night (low: RH_l = 30-50%; medium: RH_m = 45-70%; and high: RH_h = 60-90%). The effects of AV were studied during daytime at 3 levels (no fan: AV_l = 0.1 m/s; fan at medium speed: AV_m = 1.0 m/s; and fan at high speed: AV_h = 1.5 m/s). The AV_m and AV_h were combined only with RH_m. In total, there were 5 treatments with 4 replicates (cows) for each. Effects of short and long exposure time to warm condition were evaluated by collecting data 2 times a day, in the morning (short: 1-h exposure time) and afternoon (long: 8-h exposure time). The cows were allowed to adapt to the experimental conditions during 3 d before the main 8-d experimental period. The cows had free access to feed and water. Sensible heat loss (SHL) and latent heat loss (LHL) from the skin surface were measured using a ventilated skin box placed on the belly of the cow. These heat losses from respiration were measured with a face mask covering the cow's nose and mouth. The results showed that skin SHL decreased with increasing ambient T and the decreasing rate was not affected by RH or AV. The average skin SHL, however, was higher under medium and high AV levels, whereas it was similar under different RH levels. The skin LHL increased with increasing ambient T. There was no effect of RH on the increasing rate of LHL with ambient T. A larger increasing rate of skin LHL with ambient T was observed at high AV level compared with the other levels. Both RH and AV had no significant effects on respiration SHL or LHL. The cows lost more skin sensible heat and total respiration heat under long exposure than short exposure. When ambient T was below 20°C the total LHL (skin + respiration) represented approx. 50% of total heat loss, whereas above 28°C the LHL accounted for more than 70% of the total heat loss. Respiration heat loss increased by 34 and 24% under short and long exposures when ambient T rose from 16 to 32°C.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Animais , Temperatura Corporal , Bovinos , Feminino , Umidade , Lactação , Gravidez , Respiração , Temperatura
3.
J Dairy Sci ; 105(2): 1701-1716, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34799118

RESUMO

This study determined the effects of increasing ambient temperature (T) at different relative humidity (RH) and air velocity (AV) levels on the physiological and productive responses of dairy cows. Twenty Holstein dairy cows were housed inside climate-controlled respiration chambers, in which the climate was programmed to follow a daily pattern of lower night and higher day T with a 9°C difference, excluding effects from sun radiation. Within our 8-d data collection period, T was gradually increased from 7 to 21°C during the night (12 h) and 16 to 30°C during the day (12 h), with an incremental change of 2°C per day for both nighttime and daytime T. During each research period, RH and AV were kept constant at 1 of 5 treatment levels. A diurnal pattern for RH was created, with lower levels during the day and higher levels during the night: low (RH_l: 30-50%), medium (RH_m: 45-70%), and high (RH_h: 60-90%). The effects of AV were studied during the day at 3 levels: no fan (AV_l: 0.1 m/s), fan at medium speed (AV_m: 1.0 m/s), and fan at high speed (AV_h: 1.5 m/s). Effects of short and long exposure time to increasing T were evaluated by collecting data 2 times a day: in the morning [short: 1 h (or less) - exposure time] and afternoon (long: 8 h - exposure time). The animals had free access to feed and water and both were ad libitum. Respiration rate (RR), rectal temperature (RT), skin temperature (ST), dry matter intake, water intake, milk yield, and composition were measured. The inflection point temperatures (IPt) at which a certain variable started to change were determined for the different RH and AV levels and different exposure times. Results showed that IPt under long exposure time for RR (first indicator) varied between 18.9 and 25.5°C but was between 20.1 and 25.9°C for RT (a delayed indicator). The IPt for both RR and RT decreased with higher RH levels, whereas IPt increased with higher AV for RR but gave a minor change for RT. The ST was positively correlated with ambient T and ST was not affected by RH but significantly affected by AV. For RR, all IPt was lower under long exposure time than under short exposure time. The combination of higher RH levels and low AV level negatively affected dry matter intake. Water intake increased under all treatments except RH_l-AV_l. Treatment RH_h-AV_l negatively affected milk protein and fat yield, whereas treatments RH_m-AV_m and RH_m-AV_h reduced milk fat yield. We concluded that RH and AV significantly affected the responses of RR, RT, ST, and productive performance of high-producing Holstein cows. These responses already occurred at moderate ambient T of 19 to 26°C.


Assuntos
Temperatura Alta , Lactação , Animais , Bovinos , Feminino , Umidade , Leite , Temperatura
5.
J Dairy Sci ; 101(11): 10271-10282, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30243630

RESUMO

The transition period is a demanding phase in the life of dairy cows. Metabolic and infectious disorders frequently occur in the first weeks after calving. To identify cows that are less able to cope with the transition period, physiologic or behavioral signals acquired with sensors might be useful. However, it is not yet clear which signals or combination of signals and which signal properties are most informative with respect to disease severity after calving. Sensor data on activity and behavior measurements as well as rumen and ear temperature data from 22 dairy cows were collected during a period starting 2 wk before expected parturition until 6 wk after parturition. During this period, the health status of each cow was clinically scored daily. A total deficit score (TDS) was calculated based on the clinical assessment, summarizing disease length and intensity for each cow. Different sensor data properties recorded during the period before calving as well as the period after calving were tested as a predictor for TDS using univariate analysis of covariance. To select the model with the best combination of signals and signal properties, we quantified the prediction accuracy for TDS in a multivariate model. Prediction accuracy for TDS increased when sensors were combined, using static and dynamic signal properties. Statistically, the most optimal linear combination of predictors consisted of average eating time, variance of daily ear temperature, and regularity of daily behavior patterns in the dry period. Our research indicates that a combination of static and dynamic sensor data properties could be used as indicators of cow resilience.


Assuntos
Comportamento Animal , Bovinos/fisiologia , Parto , Período Pós-Parto , Animais , Temperatura Corporal , Ingestão de Alimentos , Feminino , Lactação , Gravidez
7.
Equine Vet J ; 34(6): 594-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12357999

RESUMO

Motion of the navicular bone might play a role in the development of navicular disease in horses but is difficult to asses. In the present study, 3-dimensional motion of this bone was determined using roentgen stereophotogrammetric analysis. Tantalum pellets were inserted, in vitro, in the bones of 6 forelimbs of mature Shetland ponies and kinematics were measured during vertical loading up to 2 kN. The motions of the navicular bone and coffin joint were limited to flexion/extension, there were no substantial out-of-plane motions. There was only little flexion between the navicular bone and the coffin bone, which was correlated (r = 0.66) with coffin joint flexion. There was substantial flexion between the navicular bone and the short pastern, which was highly correlated with coffin joint flexion (r = 0.97). We conclude that the navicular bone, generally, follows the coffin bone during coffin joint flexion, although there are small but consistent motions between the navicular bone and the coffin bone. These motions might play a role in the development of navicular disease in horses.


Assuntos
Casco e Garras/fisiologia , Cavalos/fisiologia , Articulação do Dedo do Pé/fisiologia , Animais , Fenômenos Biomecânicos , Membro Anterior , Casco e Garras/diagnóstico por imagem , Doenças dos Cavalos/fisiopatologia , Técnicas In Vitro , Movimento , Fotogrametria/métodos , Fotogrametria/veterinária , Radiografia , Articulação do Dedo do Pé/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA