Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pathogens ; 13(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38668251

RESUMO

The global spread of African swine fever (ASF) in recent decades has led to the need for technological advances in sampling and diagnostic techniques. The impetus for these has been the need to enable sampling by lay persons and to obtain at least a preliminary diagnosis in the field for early control measures to be put in place before final laboratory confirmation. In rural Africa, rapid diagnosis is hampered by challenges that include lack of infrastructure as well as human and financial resources. Lack of animal health personnel, access to affordable means to transport field samples to a laboratory, and lack of laboratories with the capacity to make the diagnosis result in severe under-reporting of ASF, especially in endemic areas. This review summarizes the challenges identified in gap analyses relevant to low- and middle-income countries, with a focus on Africa, and explore the opportunities provided by recent research to improve field diagnosis and quality of diagnostic samples used. Sampling techniques include invasive sampling techniques requiring trained personnel and non-invasive sampling requiring minimal training, sampling of decomposed carcass material, and preservation of samples in situations where cold chain maintenance cannot be guaranteed. Availability and efficacy of point-of-care (POC) tests for ASF has improved considerably in recent years and their application, as well as advantages and limitations, are discussed. The adequacy of existing laboratory diagnostic capacity is evaluated and opportunities for networking amongst reference and other laboratories offering diagnostic services are discussed. Maintaining laboratory diagnostic efficiency in the absence of samples during periods of quiescence is another issue that requires attention, and the role of improved laboratory networking is emphasized. Early diagnosis of ASF is key to managing the disease spread. Therefore, the establishment of the Africa Chapter of the Global African Swine Fever Research Alliance (GARA) increases opportunities for collaboration and networking among the veterinary diagnostic laboratories in the region.

2.
Pathogens ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37764936

RESUMO

Since the initial report of African swine fever (ASF) in Kenya in 1921, the disease has predominantly been confined to Africa. However, in 2007, an ASF genotype II virus of unknown provenance was introduced to Georgia. This was followed by its rampant spread to 73 countries, and the disease is now a global threat to pig production, with limited effective treatment and vaccine options. Here, we investigate the origin of Georgia 2007/1 through genome sequencing of three viruses from outbreaks that predated the genotype II introduction to the Caucasus, namely Madagascar (MAD/01/1998), Mozambique (MOZ/01/2005), and Mauritius (MAU/01/2007). In addition, genome sequences were generated for viruses from East African countries historically affected by genotype II (Malawi (MAL/04/2011) and Tanzania (TAN/01/2011)) and newly invaded southern African countries (Zimbabwe (ZIM/2015) and South Africa (RSA/08/2019). Phylogenomic analyses revealed that MOZ/01/2005, MAL/04/2011, ZIM/2015 and RSA/08/2019 share a recent common ancestor with Georgia 2007/1 and that none contain the large (~550 bp) deletion in the MGT110 4L ORF observed in the MAD/01/1998, MAU/01/2007 and TAN/01/2011 isolates. Furthermore, MOZ/01/2005 and Georgia 2007/1 only differ by a single synonymous SNP in the EP402R ORF, confirming that the closest link to Georgia 2007/1 is a virus that was circulating in Mozambique in 2005.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA