Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 262(4): 410-426, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180358

RESUMO

Mutations in Angiogenin (ANG) and TARDBP encoding the 43 kDa transactive response DNA binding protein (TDP-43) are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). ANG is neuroprotective and plays a role in stem cell dynamics in the haematopoietic system. We obtained skin fibroblasts from members of an ALS-FTD family, one with mutation in ANG, one with mutation in both TARDBP and ANG, and one with neither mutation. We reprogrammed these fibroblasts to induced pluripotent stem cells (iPSCs) and generated cortical organoids as well as induced stage-wise differentiation of the iPSCs to neurons. Using these two approaches we investigated the effects of FTD-associated mutations in ANG and TARDBP on neural precursor cells, neural differentiation, and response to stress. We observed striking neurodevelopmental defects such as abnormal and persistent rosettes in the organoids accompanied by increased self-renewal of neural precursor cells. There was also a propensity for differentiation to later-born neurons. In addition, cortical neurons showed increased susceptibility to stress, which is exacerbated in neurons carrying mutations in both ANG and TARDBP. The cortical organoids and neurons generated from patient-derived iPSCs carrying ANG and TARDBP gene variants recapitulate dysfunctions characteristic of frontotemporal lobar degeneration observed in FTD patients. These dysfunctions were ameliorated upon treatment with wild type ANG. In addition to its well-established role during the stress response of mature neurons, ANG also appears to play a role in neural progenitor dynamics. This has implications for neurogenesis and may indicate that subtle developmental defects play a role in disease susceptibility or onset. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Neurais , Ribonuclease Pancreático , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Células-Tronco Neurais/metabolismo , Mutação , Homeostase
2.
Int Rev Neurobiol ; 176: 1-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38802173

RESUMO

Amyotrophic lateral sclerosis (ALS) is a late-onset syndrome characterized by the progressive degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN). ALS forms a clinical continuum with frontotemporal dementia (FTD), in which there are progressive language deficits or behavioral changes. The genetics and pathology underlying both ALS and FTD overlap as well, with cytoplasmatic misvocalization of TDP-43 as the hallmark. ALS is diagnosed by exclusion. Over the years several diagnostic criteria have been proposed, which in essence all require a history of slowly progressive motor symptoms, with UMN and LMN signs on neurological examination, clear spread of symptoms through the body, the exclusion of other disorder that cause similar symptoms and an EMG that it is compatible with LMN loss. ALS is heterogeneous disorder that may present in multitude ways, which makes the diagnosis challenging. Therefore, a systematic approach in the diagnostic process is required in line with the most common presentations. Subsequently, assessing whether there are cognitive and/or behavioral changes within the spectrum of FTD and lastly determining the cause is genetic. This chapter, an outline on how to navigate this 3 step process.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Diagnóstico Diferencial , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/patologia
3.
Neurology ; 103(2): e209603, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38875517

RESUMO

BACKGROUND AND OBJECTIVES: Dysfunction of energy metabolism, cognition, and behavior are important nonmotor symptoms of amyotrophic lateral sclerosis (ALS), negatively affecting survival and quality of life, but poorly understood. Neuroimaging is ideally suited to studying nonmotor neurodegeneration in ALS, but few studies have focused on the hypothalamus, a key region for regulating energy homeostasis, cognition, and behavior. We evaluated, therefore, hypothalamic neurodegeneration in ALS and explored the relationship between hypothalamic volumes and dysregulation of energy metabolism, cognitive and behavioral changes, disease progression, and survival. METHODS: Patients with ALS and population-based controls were included for this cross-sectional and longitudinal MRI study. The hypothalamus was segmented into 5 subregions and their volumes were calculated. Linear (mixed) models, adjusted for age, sex, and total intracranial volume, were used to compare hypothalamic volumes between groups and to analyze associations with metabolism, cognition, behavior, and disease progression. Cox proportional hazard models were used to investigate the relationship of hypothalamic volumes with survival. Permutation-based corrections for multiple hypothesis testing were applied to all analyses to control the family-wise error rate. RESULTS: Data were available for 564 patients with ALS and 356 controls. The volume of the anterior superior subregion of the hypothalamus was smaller in patients with ALS than in controls (ß = -0.70 [-1.15 to -0.25], p = 0.013). Weight loss, memory impairments, and behavioral disinhibition were associated with a smaller posterior hypothalamus (ß = -4.79 [-8.39 to -2.49], p = 0.001, ß = -10.14 [-15.88 to -4.39], p = 0.004, and ß = -12.09 [-18.83 to -5.35], p = 0.003, respectively). Furthermore, the volume of this subregion decreased faster over time in patients than in controls (ß = -0.25 [0.42 to -0.09], p = 0.013), and a smaller volume of this structure was correlated with shorter survival (hazard ratio = 0.36 [0.21-0.61], p = 0.029). DISCUSSION: We obtained evidence for hypothalamic involvement in ALS, specifically marked by atrophy of the anterior superior subregion. Moreover, we found that atrophy of the posterior hypothalamus was associated with weight loss, memory dysfunction, behavioral disinhibition, and survival, and that this subregion deteriorated faster in patients with ALS than in controls. These findings improve our understanding of nonmotor involvement in ALS and could contribute to the identification of new treatment targets for this devastating disease.


Assuntos
Esclerose Lateral Amiotrófica , Hipotálamo , Imageamento por Ressonância Magnética , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Hipotálamo/diagnóstico por imagem , Hipotálamo/metabolismo , Hipotálamo/patologia , Idoso , Estudos Transversais , Estudos Longitudinais , Progressão da Doença , Cognição/fisiologia , Adulto , Metabolismo Energético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA