Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792575

RESUMO

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Animais , Plasmodium falciparum , Epitopos , Proteínas de Protozoários , Antígenos de Protozoários , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Malária Falciparum/prevenção & controle
2.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792574

RESUMO

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Culicidae/metabolismo , Proteínas de Protozoários , Anticorpos Monoclonais , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários
3.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35977542

RESUMO

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Bloqueadores , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos de Protozoários , Humanos , Malária Falciparum/prevenção & controle , Glicoproteínas de Membrana , Camundongos , Plasmodium falciparum , Proteínas de Protozoários , Vacinação
4.
EMBO J ; 40(6): e106583, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33459428

RESUMO

Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood-infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host-Pf interactions and may delineate novel pathways for intervention strategies.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Hepatócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Transporte Biológico/fisiologia , Proliferação de Células/fisiologia , Glucose/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Humanos , Fígado/parasitologia , Fígado/patologia
5.
PLoS Comput Biol ; 19(8): e1011090, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549177

RESUMO

Complexome profiling allows large-scale, untargeted, and comprehensive characterization of protein complexes in a biological sample using a combined approach of separating intact protein complexes e.g., by native gel electrophoresis, followed by mass spectrometric analysis of the proteins in the resulting fractions. Over the last decade, its application has resulted in a large collection of complexome profiling datasets. While computational methods have been developed for the analysis of individual datasets, methods for large-scale comparative analysis of complexomes from multiple species are lacking. Here, we present Comparative Clustering (CompaCt), that performs fully automated integrative analysis of complexome profiling data from multiple species, enabling systematic characterization and comparison of complexomes. CompaCt implements a novel method for leveraging orthology in comparative analysis to allow systematic identification of conserved as well as taxon-specific elements of the analyzed complexomes. We applied this method to a collection of 53 complexome profiles spanning the major branches of the eukaryotes. We demonstrate the ability of CompaCt to robustly identify the composition of protein complexes, and show that integrated analysis of multiple datasets improves characterization of complexes from specific complexome profiles when compared to separate analyses. We identified novel candidate interactors and complexes in a number of species from previously analyzed datasets, like the emp24, the V-ATPase and mitochondrial ATP synthase complexes. Lastly, we demonstrate the utility of CompaCt for the automated large-scale characterization of the complexome of the mosquito Anopheles stephensi shedding light on the evolution of metazoan protein complexes. CompaCt is available from https://github.com/cmbi/compact-bio.


Assuntos
Eucariotos , Proteínas , Animais , Análise por Conglomerados , Células Eucarióticas/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo
6.
BMC Med ; 21(1): 137, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024868

RESUMO

BACKGROUND: Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro. Here, we evaluate this strain for use in CPS immunization regimes. METHODS: In a partially randomized, open-label study conducted at the Radboudumc, Nijmegen, the Netherlands, healthy, malaria-naïve adults were immunized by three rounds of fifteen or five NF135-infected mosquito bites under mefloquine prophylaxis (cohort A) or fifteen NF135-infected mosquito bites and presumptive treatment with artemether/lumefantrine (cohort B). Cohort A participants were exposed to a homologous challenge 19 weeks after immunization. The primary objective of the study was to evaluate the safety and tolerability of CPS immunizations with NF135. RESULTS: Relatively high liver-to-blood inocula were observed during immunization with NF135 in both cohorts. Eighteen of 30 (60%) high-dose participants and 3/10 (30%) low-dose participants experienced grade 3 adverse events 7 to 21 days following their first immunization. All cohort A participants and two participants in cohort B developed breakthrough blood-stage malaria infections during immunizations requiring rescue treatment. The resulting compromised immunizations induced modest sterile protection against homologous challenge in cohort A (5/17; 29%). CONCLUSIONS: These CPS regimes using NF135 were relatively poorly tolerated and frequently required rescue treatment, thereby compromising immunization efficiency and protective efficacy. Consequently, the full potential of NF135 sporozoites for induction of immune protection remains inconclusive. Nonetheless, the high liver-stage burden achieved by this strain highlights it as an interesting potential candidate for novel whole sporozoite immunization approaches. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov under identifier NCT03813108.


Assuntos
Antimaláricos , Mordeduras e Picadas de Insetos , Vacinas Antimaláricas , Malária , Adulto , Animais , Humanos , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Imunização/métodos , Mordeduras e Picadas de Insetos/tratamento farmacológico , Malária/prevenção & controle , Vacinas Antimaláricas/efeitos adversos , Plasmodium falciparum , Esporozoítos
7.
J Infect Dis ; 224(7): 1257-1265, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239171

RESUMO

BACKGROUND: For malaria elimination efforts, it is important to better understand parasite transmission to mosquitoes and develop models for early-clinical evaluation of transmission-blocking interventions. METHODS: In a randomized open-label trial, 24 participants were infected by bites from Plasmodium falciparum 3D7-infected mosquitoes (mosquito bite [MB]; n = 12) or by induced blood-stage malaria (IBSM) with the same parasite line (n = 12). After subcurative piperaquine treatment, asexual parasite and gametocytes kinetics were assessed, and mosquito feeding experiments were performed. RESULTS: Study procedures were well tolerated. The median peak gametocyte density was 1304/mL (interquartile range, 308-1607/mL) after IBSM, compared with 14/mL (10-64/mL) after MB inoculation (P < .001), despite similar peak asexual parasite densities (P = .48). Peak gametocyte density was correlated with preceding pfap2-g transcripts, indicative of gametocyte commitment (ρ = 0.62; P = .002). Direct feeding assays resulted in mosquito infections from 9 of 12 participants after IBSM versus 0 of 12 after MB inoculation (P < .001). CONCLUSIONS: We observed a striking effect of inoculation method on gametocyte production, suggesting higher gametocyte commitment after IBSM. Our direct comparison of MB and IBSM establishes the controlled human malaria infection transmission model, using intravenous administration of P. falciparum-infected erythrocytes as a model for early-clinical evaluation of interventions that aim to interrupt malaria transmission. CLINICAL TRIAL REGISTRATION: NCT03454048.


Assuntos
Anopheles/parasitologia , Mordeduras e Picadas de Insetos , Malária Falciparum/sangue , Plasmodium falciparum/isolamento & purificação , Adolescente , Animais , Feminino , Humanos , Malária , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Masculino , Parasitemia
8.
Malar J ; 20(1): 381, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565372

RESUMO

BACKGROUND: The ability to culture Plasmodium falciparum continuously in vitro has enabled stable access to asexual and sexual parasites for malaria research. The portfolio of isolates has remained limited and research is still largely based on NF54 and its derived clone 3D7. Since 1978, isolates were collected and cryopreserved at Radboudumc from patients presenting at the hospital. Here, procedures are described for culture adaptation of asexual parasites, cloning and production of sexual stage parasites responsible for transmission (gametocytes) and production of oocysts in Anopheles mosquitoes. This study aimed to identify new culture-adapted transmissible P. falciparum isolates, originating from distinct geographical locations. METHODS: Out of a collection of 121 P. falciparum isolates stored in liquid nitrogen, 21 from different geographical origin were selected for initial testing. Isolates were evaluated for their ability to be asexually cultured in vitro, their gametocyte production capacity, and consistent generation of oocysts. RESULTS: Out of 21 isolates tested, twelve were excluded from further analysis due to lack of mature gametocyte production (n = 1) or generation of satisfactory numbers of oocysts in mosquitoes (n = 11). Nine isolates fulfilled selection criteria and were cloned by limiting dilution and retested. After cloning, one isolate was excluded for not showing transmission. The remaining eight isolates transmitted to Anopheles stephensi or Anopheles coluzzii mosquitoes and were categorized into two groups with a reproducible mean oocyst infection intensity above (n = 5) or below five (n = 3). CONCLUSIONS: These new P. falciparum culture-adapted isolates with reproducible transmission to Anopheles mosquitoes are a valuable addition to the malaria research tool box. They can aid in the development of malaria interventions and will be particularly useful for those studying malaria transmission.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Animais , Geografia , Especificidade da Espécie
9.
Malar J ; 20(1): 191, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879163

RESUMO

BACKGROUND: Mosquito feeding assays using venous blood are commonly used for evaluating the transmission potential of malaria infected individuals. To improve the accuracy of these assays, care must be taken to prevent premature activation or inactivation of gametocytes before they are fed to mosquitoes. This can be challenging in the field where infected individuals and insectary facilities are sometimes very far apart. In this study, a simple, reliable, field applicable method is presented for storage and transport of gametocyte infected blood using a thermos flask. METHODS: The optimal storage conditions for maintaining the transmissibility of gametocytes were determined initially using cultured Plasmodium falciparum gametocytes in standard membrane feeding assays (SMFAs). The impact of both the internal thermos water temperature (35.5 to 37.8 °C), and the external environmental temperature (room temperature to 42 °C) during long-term (4 h) storage, and the impact of short-term (15 min) temperature changes (room temp to 40 °C) during membrane feeding assays was assessed. The optimal conditions were then evaluated in direct membrane feeding assays (DMFAs) in Burkina Faso and The Gambia where blood from naturally-infected gametocyte carriers was offered to mosquitoes immediately and after storage in thermos flasks. RESULTS: Using cultured gametocytes in SMFAs it was determined that an internal thermos water temperature of 35.5 °C and storage of the thermos flask between RT (~ 21.3 °C) and 32 °C was optimal for maintaining transmissibility of gametocytes for 4 h. Short-term storage of the gametocyte infected blood for 15 min at temperatures up to 40 °C (range: RT, 30 °C, 38 °C and 40 °C) did not negatively affect gametocyte infectivity. Using samples from natural gametocyte carriers (47 from Burkina Faso and 16 from The Gambia), the prevalence of infected mosquitoes and the intensity of oocyst infection was maintained when gametocyte infected blood was stored in a thermos flask in water at 35.5 °C for up to 4 h. CONCLUSIONS: This study determines the optimal long-term (4 h) storage temperature for gametocyte infected blood and the external environment temperature range within which gametocyte infectivity is unaffected. This will improve the accuracy, reproducibility, and utility of DMFAs in the field, and permit reliable comparative assessments of malaria transmission epidemiology in different settings.


Assuntos
Anopheles/parasitologia , Coleta de Amostras Sanguíneas , Mosquitos Vetores/parasitologia , Plasmodium falciparum/fisiologia , Adolescente , Animais , Burkina Faso , Criança , Pré-Escolar , Feminino , Gâmbia , Humanos , Temperatura
10.
Artigo em Inglês | MEDLINE | ID: mdl-33077656

RESUMO

For a long while, 8-aminoquinoline compounds have been the only therapeutic agents against latent hepatic malaria parasites. These have poor activity against the blood-stage plasmodia causing acute malaria and must be used in conjunction with partner blood schizontocidal agents. We examined the impacts of one such agent, chloroquine, upon the activity of primaquine, an 8-aminoquinoline, against hepatic stages of Plasmodium cynomolgi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium falciparum within several ex vivo systems-primary hepatocytes of Macaca fascicularis, primary human hepatocytes, and stably transformed human hepatocarcinoma cell line HepG2. Primaquine exposures to formed hepatic schizonts and hypnozoites of P. cynomolgi in primary simian hepatocytes exhibited similar 50% inhibitory concentration (IC50) values near 0.4 µM, whereas chloroquine in the same system exhibited no inhibitory activities. Combining chloroquine and primaquine in this system decreased the observed primaquine IC50 for all parasite forms in a chloroquine dose-dependent manner by an average of 18-fold. Chloroquine also decreased the primaquine IC50 against hepatic P. falciparum in primary human hepatocytes, P. berghei in simian primary hepatocytes, and P. yoelii in primary human hepatocytes. Chloroquine had no impact on primaquine IC50 against P. yoelii in HepG2 cells and, likewise, had no impact on the IC50 of atovaquone (hepatic schizontocide) against P. falciparum in human hepatocytes. We describe important sources of variability in the potentiation of primaquine activity by chloroquine in these systems. Chloroquine potentiated primaquine activity against hepatic forms of several plasmodia. We conclude that chloroquine specifically potentiated 8-aminoquinoline activities against active and dormant hepatic-stage plasmodia in normal primary hepatocytes but not in a hepatocarcinoma cell line.


Assuntos
Antimaláricos , Malária , Plasmodium , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Malária/tratamento farmacológico , Primaquina/farmacologia , Primaquina/uso terapêutico
11.
Malar J ; 18(1): 287, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455343

RESUMO

BACKGROUND: The human infectious reservoir for malaria consists of individuals capable of infecting mosquitoes. Oocyst prevalence and density are typical indicators of human infectivity to mosquitoes. However, identification of oocysts is challenging, particularly in areas of low malaria transmission intensity where few individuals may infect mosquitoes, and infected mosquitoes tend to have few oocysts. Here, features that differentiate oocysts from other oocyst-like in mosquito midguts are explained and illustrated. In addition, the establishment and maintenance of infrastructure to perform malaria transmission experiments is described. This work may support other initiatives to set up membrane feeding infrastructure and guide oocyst detection in low transmission settings. METHODS: In 2014, an insectary was developed and equipped in Tororo district, Uganda. A colony of Anopheles gambiae s.s. mosquitoes (Kisumu strain) was initiated to support infectivity experiments from participants enrolled in a large cohort study. Venous blood drawn from participants who were naturally infected with malaria parasites was used for membrane feeding assays, using 60-80 mosquitoes per experiment. Approximately 9-10 days after feeding, mosquitoes were dissected, and midguts were stained in mercurochrome and examined by light microscopy for Plasmodium falciparum oocysts and similar structures. In supportive experiments, different staining procedures were compared using in vitro cultured parasites. RESULTS: A stable colony of the Kisumu strain of An. gambiae s.s. was achieved, producing 5000-10,000 adult mosquitoes on a weekly basis. Challenges due to temperature fluctuations, mosquito pathogens and pests were successfully overcome. Oocysts were characterized by: presence of malaria pigment, clearly defined edge, round shape within the mosquito midgut or on the peripheral tissue and always attached to the epithelium. The main distinguishing feature between artifacts and mature oocysts was the presence of defined pigment within the oocysts. CONCLUSIONS: Oocysts may be mistaken for other structures in mosquito midguts. Distinguishing real oocysts from oocyst-like structures may be challenging for inexperienced microscopists due to overlapping features. The characteristics and guidelines outlined here support identification of oocysts and reliable detection at low oocyst densities. Practical advice on sustaining a healthy mosquito colony for feeding experiments is provided. Following the reported optimization, the established infrastructure in Tororo allows assessments of infectivity of naturally infected parasite carriers.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Oocistos/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Animais , Feminino , Humanos , Oocistos/citologia , Oocistos/crescimento & desenvolvimento , Plasmodium falciparum/citologia , Plasmodium falciparum/crescimento & desenvolvimento , Uganda
12.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735521

RESUMO

Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.


Assuntos
Formação de Anticorpos/fisiologia , Antimaláricos/imunologia , Antimaláricos/uso terapêutico , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Esporozoítos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Humanos , Imunização , Esporozoítos/imunologia , Vacinação
13.
Clin Infect Dis ; 66(12): 1883-1891, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304258

RESUMO

Background: The majority of Plasmodium vivax and Plasmodium falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections compared to clinical malaria cases is currently unknown. Methods: We assessed infectivity of passively recruited symptomatic malaria patients (n = 41) and community-recruited asymptomatic individuals with microscopy-detected (n = 41) and polymerase chain reaction (PCR)-detected infections (n = 82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data were used to estimate the contributions of these populations to the infectious reservoir. Results: Overall, 34.9% (29/83) of P. vivax- and 15.1% (8/53) P. falciparum-infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). Plasmodium vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy-detected, and PCR-detected infections were responsible for 8.0%, 76.2%, and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. Conclusions: In this low-endemic setting aiming for malaria elimination, asymptomatic infections were highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might accelerate elimination efforts.


Assuntos
Anopheles/parasitologia , Infecções Assintomáticas/epidemiologia , Reservatórios de Doenças/parasitologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Doenças Endêmicas/estatística & dados numéricos , Etiópia/epidemiologia , Feminino , Humanos , Malária Falciparum/transmissão , Malária Vivax/transmissão , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Prevalência , Adulto Jovem
14.
Mol Microbiol ; 101(1): 78-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991313

RESUMO

Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species.


Assuntos
Culicidae/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos , Feminino , Estágios do Ciclo de Vida , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Oócitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/metabolismo
15.
BMC Med ; 15(1): 168, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903777

RESUMO

BACKGROUND: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION: This trial is registered in clinicaltrials.gov, under identifier NCT02098590 .


Assuntos
Imunização/métodos , Vacinas Antimaláricas/imunologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Adulto Jovem
16.
Cell Microbiol ; 18(3): 369-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332724

RESUMO

Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development.


Assuntos
Fígado/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Esporozoítos/fisiologia , Animais , Animais Geneticamente Modificados , Antimaláricos/farmacologia , Sangue/parasitologia , Feminino , Hepatócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
17.
Malar J ; 16(1): 315, 2017 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-28779750

RESUMO

BACKGROUND: Mosquito-feeding assays are important tools to guide the development and support the evaluation of transmission-blocking interventions. These functional bioassays measure the sporogonic development of gametocytes in blood-fed mosquitoes. Measuring the infectivity of low gametocyte densities has become increasingly important in malaria elimination scenarios. This will pose challenges to the sensitivity and throughput of existing mosquito-feeding assay protocols. Here, different gametocyte concentration methods of blood samples were explored to optimize conditions for detection of positive mosquito infections. METHODS: Mature gametocytes of Plasmodium falciparum were diluted into whole blood samples of malaria-naïve volunteers. Standard centrifugation, Percoll gradient, magnetic cell sorting (MACS) enrichment were compared using starting blood volumes larger than the control (direct) feed. RESULTS: MACS gametocyte enrichment resulted in the highest infection intensity with statistically significant increases in mean oocyst density in 2 of 3 experiments (p = 0.0003; p ≤ 0.0001; p = 0.2348). The Percoll gradient and standard centrifugation procedures resulted in variable infectivity. A significant increase in the proportion of infected mosquitoes and oocyst density was found when larger volumes of gametocyte-infected blood were used with the MACS procedure. CONCLUSIONS: The current study demonstrates that concentration methods of P. falciparum gametocyte-infected whole blood samples can enhance transmission in mosquito-feeding assays. Gametocyte purification by MACS was the most efficient method, allowing the assessment of gametocyte infectivity in low-density gametocyte infections, as can be expected in natural or experimental conditions.


Assuntos
Anopheles/parasitologia , Separação Celular , Malária Falciparum/sangue , Parasitologia/métodos , Plasmodium falciparum/isolamento & purificação , Animais , Humanos , Magnetismo , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia
18.
Malar J ; 16(1): 356, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877707

RESUMO

BACKGROUND: The malaria infection status of mosquitoes is commonly determined by microscopic detection of oocysts on the dissected mosquito midgut. This method is labour-intensive, does not allow processing of large numbers of mosquitoes and can be challenging in terms of objective classification of oocysts. Here, a semi-high-throughput bead-beating ELISA method is proposed for detection of the circumsporozoite protein (CSP) followed by confirmation by quantitative PCR (qPCR). METHODS: Cultured Plasmodium falciparum gametocytes were offered to Anopheles stephensi mosquitoes and examined by microscopy. After bead-beating, mosquito homogenate was examined by CSP-ELISA and 18S qPCR. As negative controls, mosquitoes that were offered a heat-inactivated gametocyte blood meal were used. The CSP-ELISA/qPCR methodology was applied to high and low-intensity infections of cultured P. falciparum gametocytes. A similar methodology optimized for P. vivax was used on mosquitoes that were offered blood from Ethiopian donors who were naturally infected with P. vivax. RESULTS: There was considerable variation in CSP-ELISA signal and qPCR values in mosquitoes with low oocyst intensities. There was a strong agreement mosquito positivity by CSP-ELISA and by qPCR in mosquitoes that fed on cultured P. falciparum material (agreement 96.9%; kappa = 0.97) and naturally infected P. vivax parasite carriers [agreement 92.4% (kappa = 0.83)]. CONCLUSIONS: The proposed bead-beating CSP-ELISA/qPCR methodology considerably increases throughput for the detection of mosquito infection. qPCR remains necessary to confirm infections in mosquitoes with low CSP-ELISA signal. This methodology may prove particularly useful for studies where very low mosquito infection prevalence is expected and study sites where experience with oocyst detection is limited.


Assuntos
Anopheles/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/sangue , Proteínas de Protozoários/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Antígenos de Protozoários/sangue , Antígenos de Protozoários/isolamento & purificação , DNA de Protozoário , Feminino , Humanos , Insetos Vetores/parasitologia , Oocistos , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Plasmodium vivax/classificação , Plasmodium vivax/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade
19.
Malar J ; 15: 463, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27612458

RESUMO

BACKGROUND: An effective malaria transmission-blocking vaccine may play an important role in malaria elimination efforts, and a robust biological assay is essential for its development. The standard membrane-feeding assay (SMFA) for Plasmodium falciparum infection of mosquitoes is considered a "gold standard" assay to measure transmission-blocking activity of test antibodies, and has been utilized widely in both non-clinical and clinical studies. While several studies have discussed the inherent variability of SMFA within a study group, there has been no assessment of inter-laboratory variation. Therefore, there is currently no assurance that SMFA results are comparable between different studies. METHODS: Mouse anti-Pfs25 monoclonal antibody (mAb, 4B7 mAb), rat anti-Pfs48/45 mAb (85RF45.1 mAb) and a human polyclonal antibody (pAb) collected from a malaria-exposed adult were tested at the same concentrations (6-94 µg/mL for 4B7, 1.2-31.3 µg/mL for 85RF45.1 and 23-630 µg/mL for human pAb) in two laboratories following their own standardized SMFA protocols. The mAbs and pAb, previously shown to have strong inhibition activities in the SMFA, were tested at three or four concentrations in two or three independent assays in each laboratory, and percent inhibition in mean oocyst intensity relative to a control in the same feed was determined in each feeding experiment. RESULTS: Both monoclonal and polyclonal antibodies dose-dependently reduced oocyst intensity in all experiments performed at the two test sites. In both laboratories, the inter-assay variability in percent inhibition in oocyst intensity decreased at higher levels of inhibition, regardless of which antibody was tested. At antibody concentrations that led to a >80 % reduction in oocyst numbers, the inter-laboratory variations were in the same range compared with the inter-assay variation observed within a single laboratory, and the differences in best estimates from multiple feeds between the two laboratories were <5 percentage points. CONCLUSIONS: This study confirms previous reports that the precision of the SMFA increases with increasing percent inhibition. Moreover, the variation between the two laboratories is not greater than the variation observed within a laboratory. The findings of this study provide guidance for comparison of SMFA data from different laboratories.


Assuntos
Anticorpos Antiprotozoários/imunologia , Culicidae/parasitologia , Entomologia/métodos , Vacinas Antimaláricas/imunologia , Parasitologia/métodos , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Adulto , Animais , Anticorpos Monoclonais/imunologia , Humanos , Membranas , Camundongos , Ratos , Reprodutibilidade dos Testes
20.
J Nanobiotechnology ; 14: 30, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117585

RESUMO

BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS: Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens.


Assuntos
Vacinas de Partículas Semelhantes a Vírus/imunologia , Acinetobacter/imunologia , Animais , Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Bacteriófagos/imunologia , Proteínas do Capsídeo/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA