Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(2): 251-272, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669495

RESUMO

For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.


Assuntos
Perfilação da Expressão Gênica , Transtornos do Neurodesenvolvimento , Humanos , RNA-Seq , Cicloeximida , Análise de Sequência de RNA/métodos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética
2.
Cell ; 142(4): 601-12, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20723760

RESUMO

Fibrillar protein aggregates are the major pathological hallmark of several incurable, age-related, neurodegenerative disorders. These aggregates typically contain aggregation-prone pathogenic proteins, such as amyloid-beta in Alzheimer's disease and alpha-synuclein in Parkinson's disease. It is, however, poorly understood how these aggregates are formed during cellular aging. Here we identify an evolutionarily highly conserved modifier of aggregation, MOAG-4, as a positive regulator of aggregate formation in C. elegans models for polyglutamine diseases. Inactivation of MOAG-4 suppresses the formation of compact polyglutamine aggregation intermediates that are required for aggregate formation. The role of MOAG-4 in driving aggregation extends to amyloid-beta and alpha-synuclein and is evolutionarily conserved in its human orthologs SERF1A and SERF2. MOAG-4/SERF appears to act independently from HSF-1-induced molecular chaperones, proteasomal degradation, and autophagy. Our results suggest that MOAG-4/SERF regulates age-related proteotoxicity through a previously unexplored pathway, which will open up new avenues for research on age-related, neurodegenerative diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Senescência Celular , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas do Tecido Nervoso/química , Peptídeos/metabolismo , Proteínas/química , alfa-Sinucleína/metabolismo
3.
Brain ; 146(8): 3528-3541, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732302

RESUMO

Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.


Assuntos
Diabetes Mellitus , Microcefalia , Humanos , Animais , Camundongos , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Esfingomielina Fosfodiesterase/análise , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Poro Nuclear/metabolismo , Mitose , Diabetes Mellitus/metabolismo
4.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538041

RESUMO

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Assuntos
Actinas , Peixe-Zebra , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Endossomos/genética , Endossomos/metabolismo , Células HEK293 , Lectinas Tipo C/genética , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119330

RESUMO

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genética
6.
Hum Mutat ; 43(12): 2130-2140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251260

RESUMO

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Mutação , Splicing de RNA/genética , DNA , Fibroblastos/patologia , Neurofibromina 1/genética
7.
Glia ; 70(4): 728-747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34961968

RESUMO

Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-ß as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-ß has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.


Assuntos
Células Ependimogliais , Microglia , Animais , Sinais (Psicologia) , Perfilação da Expressão Gênica , Macaca mulatta , Oligodendroglia , Transcriptoma
8.
Am J Hum Genet ; 104(5): 936-947, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982608

RESUMO

Microglia are CNS-resident macrophages that scavenge debris and regulate immune responses. Proliferation and development of macrophages, including microglia, requires Colony Stimulating Factor 1 Receptor (CSF1R), a gene previously associated with a dominant adult-onset neurological condition (adult-onset leukoencephalopathy with axonal spheroids and pigmented glia). Here, we report two unrelated individuals with homozygous CSF1R mutations whose presentation was distinct from ALSP. Post-mortem examination of an individual with a homozygous splice mutation (c.1754-1G>C) demonstrated several structural brain anomalies, including agenesis of corpus callosum. Immunostaining demonstrated almost complete absence of microglia within this brain, suggesting that it developed in the absence of microglia. The second individual had a homozygous missense mutation (c.1929C>A [p.His643Gln]) and presented with developmental delay and epilepsy in childhood. We analyzed a zebrafish model (csf1rDM) lacking Csf1r function and found that their brains also lacked microglia and had reduced levels of CUX1, a neuronal transcription factor. CUX1+ neurons were also reduced in sections of homozygous CSF1R mutant human brain, identifying an evolutionarily conserved role for CSF1R signaling in production or maintenance of CUX1+ neurons. Since a large fraction of CUX1+ neurons project callosal axons, we speculate that microglia deficiency may contribute to agenesis of the corpus callosum via reduction in CUX1+ neurons. Our results suggest that CSF1R is required for human brain development and establish the csf1rDM fish as a model for microgliopathies. In addition, our results exemplify an under-recognized form of phenotypic expansion, in which genes associated with well-recognized, dominant conditions produce different phenotypes when biallelically mutated.


Assuntos
Anormalidades Congênitas/etiologia , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Microglia/patologia , Mutação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adulto , Animais , Criança , Anormalidades Congênitas/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homozigoto , Humanos , Lactente , Recém-Nascido , Microglia/metabolismo , Linhagem , Fenótipo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Acta Neuropathol ; 144(2): 211-239, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713703

RESUMO

Tissue-resident macrophages of the brain, including microglia, are implicated in the pathogenesis of various CNS disorders and are possible therapeutic targets by their chemical depletion or replenishment by hematopoietic stem cell therapy. Nevertheless, a comprehensive understanding of microglial function and the consequences of microglial depletion in the human brain is lacking. In human disease, heterozygous variants in CSF1R, encoding the Colony-stimulating factor 1 receptor, can lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) possibly caused by microglial depletion. Here, we investigate the effects of ALSP-causing CSF1R variants on microglia and explore the consequences of microglial depletion in the brain. In intermediate- and late-stage ALSP post-mortem brain, we establish that there is an overall loss of homeostatic microglia and that this is predominantly seen in the white matter. By introducing ALSP-causing missense variants into the zebrafish genomic csf1ra locus, we show that these variants act dominant negatively on the number of microglia in vertebrate brain development. Transcriptomics and proteomics on relatively spared ALSP brain tissue validated a downregulation of microglia-associated genes and revealed elevated astrocytic proteins, possibly suggesting involvement of astrocytes in early pathogenesis. Indeed, neuropathological analysis and in vivo imaging of csf1r zebrafish models showed an astrocytic phenotype associated with enhanced, possibly compensatory, endocytosis. Together, our findings indicate that microglial depletion in zebrafish and human disease, likely as a consequence of dominant-acting pathogenic CSF1R variants, correlates with altered astrocytes. These findings underscore the unique opportunity CSF1R variants provide to gain insight into the roles of microglia in the human brain, and the need to further investigate how microglia, astrocytes, and their interactions contribute to white matter homeostasis.


Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Doenças por Armazenamento dos Lisossomos , Doenças Neurodegenerativas , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adulto , Animais , Astrócitos/patologia , Doenças Desmielinizantes/patologia , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/patologia , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Peixe-Zebra
10.
Glia ; 69(6): 1444-1463, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33502042

RESUMO

Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined. To gain more insight into these interactions, we investigated how immunomodulation affects the regenerative outcome after optic nerve crush (ONC) in the spontaneously regenerating zebrafish. First, inducing intraocular inflammation using zymosan resulted in an acute inflammatory response, characterized by an increased infiltration and proliferation of innate blood-borne immune cells, reactivation of Müller glia, and altered retinal cytokine expression. Strikingly, inflammatory stimulation also accelerated axonal regrowth after optic nerve injury. Second, we demonstrated that acute depletion of both microglia and macrophages in the retina, using pharmacological treatments with both the CSF1R inhibitor PLX3397 and clodronate liposomes, compromised optic nerve regeneration. Moreover, we observed that csf1ra/b double mutant fish, lacking microglia in both retina and brain, displayed accelerated RGC axonal regrowth after ONC, which was accompanied with unusual Müller glia proliferative gliosis. Altogether, our results highlight the importance of altered glial cell interactions in the axonal regeneration process after ONC in adult zebrafish. Unraveling the relative contribution of the different cell types, as well as the signaling pathways involved, may pinpoint new targets to stimulate repair in the vertebrate CNS.


Assuntos
Regeneração Nervosa , Peixe-Zebra , Animais , Macrófagos , Neuroglia , Doenças Neuroinflamatórias , Retina
11.
Glia ; 68(2): 298-315, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31508850

RESUMO

Microglia are the resident macrophages of the brain. Over the past decade, our understanding of the function of these cells has significantly improved. Microglia do not only play important roles in the healthy brain but are involved in almost every brain pathology. Gene expression profiling allowed to distinguish microglia from other macrophages and revealed that the full microglia signature can only be observed in vivo. Thus, animal models are irreplaceable to understand the function of these cells. One of the popular models to study microglia is the zebrafish larva. Due to their optical transparency and genetic accessibility, zebrafish larvae have been employed to understand a variety of microglia functions in the living brain. Here, we performed RNA sequencing of larval zebrafish microglia at different developmental time points: 3, 5, and 7 days post fertilization (dpf). Our analysis reveals that larval zebrafish microglia rapidly acquire the core microglia signature and many typical microglia genes are expressed from 3 dpf onwards. The majority of changes in gene expression happened between 3 and 5 dpf, suggesting that differentiation mainly takes place during these days. Furthermore, we compared the larval microglia transcriptome to published data sets of adult zebrafish microglia, mouse microglia, and human microglia. Larval microglia shared a significant number of expressed genes with their adult counterparts in zebrafish as well as with mouse and human microglia. In conclusion, our results show that larval zebrafish microglia mature rapidly and express the core microglia gene signature that seems to be conserved across species.


Assuntos
Perfilação da Expressão Gênica , Macrófagos/metabolismo , Microglia/metabolismo , Transcriptoma/genética , Animais , Encéfalo/patologia , Larva/genética , Análise em Microsséries/métodos , Análise de Sequência de RNA/métodos , Peixe-Zebra
12.
Glia ; 67(9): 1705-1718, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31140649

RESUMO

Sphingolipidoses are severe, mostly infantile lysosomal storage disorders (LSDs) caused by defective glycosphingolipid degradation. Two of these sphingolipidoses, Tay Sachs and Sandhoff diseases, are caused by ß-Hexosaminidase (HEXB) enzyme deficiency, resulting in ganglioside (GM2) accumulation and neuronal loss. The precise sequence of cellular events preceding, and leading to, neuropathology remains unclear, but likely involves inflammation and lysosomal accumulation of GM2 in multiple cell types. We aimed to determine the consequences of Hexb activity loss for different brain cell types using zebrafish. Hexb deficient zebrafish (hexb-/- ) showed lysosomal abnormalities already early in development both in radial glia, which are the neuronal and glial progenitors, and in microglia. Additionally, at 5 days postfertilization, hexb-/- zebrafish showed reduced locomotor activity. Although specific oligosaccharides accumulate in the adult brain, hexb-/- ) zebrafish are viable and apparently resistant to Hexb deficiency. In all, we identified cellular consequences of loss of Hexb enzyme activity during embryonic brain development, showing early effects on glia, which possibly underlie the behavioral aberrations. Hereby, we identified clues into the contribution of non-neuronal lysosomal abnormalities in LSDs affecting the brain and provide a tool to further study what underlies the relative resistance to Hexb deficiency in vivo.


Assuntos
Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Lisossomos/enzimologia , Neuroglia/enzimologia , Cadeia beta da beta-Hexosaminidase/genética , Animais , Animais Geneticamente Modificados , Apoptose/fisiologia , Encéfalo/patologia , Modelos Animais de Doenças , Lisossomos/patologia , Atividade Motora/fisiologia , Neuroglia/patologia , Esfingolipidoses/enzimologia , Peixe-Zebra
13.
Glia ; 65(1): 138-149, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27757989

RESUMO

Microglia are brain resident macrophages important for brain development, connectivity, homeostasis and disease. However, it is still largely unclear how microglia functions and their identity are regulated at the molecular level. Although recent transcriptomic studies have identified genes specifically expressed in microglia, the function of most of these genes in microglia is still unknown. Here, we performed RNA sequencing on microglia acutely isolated from healthy and neurodegenerative zebrafish brains. We found that a large fraction of the mouse microglial signature is conserved in the zebrafish, corroborating the use of zebrafish to help understand microglial genetics in mammals in addition to studying basic microglia biology. Second, our transcriptome analysis of microglia following neuronal ablation suggested primarily a proliferative response of microglia, which we confirmed by immunohistochemistry and in vivo imaging. Together with the recent improvements in genome editing technology in zebrafish, these data offer opportunities to facilitate functional genetic research on microglia in vivo in the healthy as well as in the diseased brain. GLIA 2016;65:138-149.


Assuntos
Microglia/citologia , Microglia/metabolismo , Transcriptoma/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Morte Celular , Perfilação da Expressão Gênica/métodos , Imuno-Histoquímica/métodos , Macrófagos/citologia , Macrófagos/metabolismo , Análise de Sequência de RNA/métodos , Peixe-Zebra
15.
Glia ; 63(5): 719-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557007

RESUMO

A major question in research on immune responses in the brain is how the timing and nature of these responses influence physiology, pathogenesis or recovery from pathogenic processes. Proper understanding of the immune regulation of the human brain requires a detailed description of the function and activities of the immune cells in the brain. Zebrafish larvae allow long-term, noninvasive imaging inside the brain at high-spatiotemporal resolution using fluorescent transgenic reporters labeling specific cell populations. Together with recent additional technical advances this allows an unprecedented versatility and scope of future studies. Modeling of human physiology and pathology in zebrafish has already yielded relevant insights into cellular dynamics and function that can be translated to the human clinical situation. For instance, in vivo studies in the zebrafish have provided new insight into immune cell dynamics in granuloma formation in tuberculosis and the mechanisms involving treatment resistance. In this review, we highlight recent findings and novel tools paving the way for basic neuroimmunology research in the zebrafish. GLIA 2015;63:719-735.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Neuroglia/fisiologia , Peixe-Zebra/imunologia , Animais , Sistema Nervoso Central/imunologia , Humanos , Modelos Animais , Dinâmica não Linear
16.
Cell Tissue Res ; 360(1): 61-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25786736

RESUMO

Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely difficult. Even when combining light microscopy (LM) with EM (correlated LM and EM: CLEM) to find areas of interest, the labeling of molecules is still a challenge. We present a new genetically encoded probe for CLEM, named "FLIPPER", which facilitates quantitative analysis of ultrastructural features in cells. FLIPPER consists of a fluorescent protein (cyan, green, orange, or red) for LM visualization, fused to a peroxidase allowing visualization of targets at the EM level. The use of FLIPPER is straightforward and because the module is completely genetically encoded, cells can be optimally prepared for EM examination. We use FLIPPER to quantify cellular morphology at the EM level in cells expressing a normal and disease-causing point-mutant cell-surface protein called EpCAM (epithelial cell adhesion molecule). The mutant protein is retained in the endoplasmic reticulum (ER) and could therefore alter ER function and morphology. To reveal possible ER alterations, cells were co-transfected with color-coded full-length or mutant EpCAM and a FLIPPER targeted to the ER. CLEM examination of the mixed cell population allowed color-based cell identification, followed by an unbiased quantitative analysis of the ER ultrastructure by EM. Thus, FLIPPER combines bright fluorescent proteins optimized for live imaging with high sensitivity for EM labeling, thereby representing a promising tool for CLEM.


Assuntos
Células/ultraestrutura , Microscopia Eletrônica/métodos , Imagem Molecular/métodos , Sondas Moleculares/química , Organelas/ultraestrutura , Sobrevivência Celular , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência
17.
J Neurosci ; 33(9): 3834-43, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447595

RESUMO

Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.


Assuntos
Movimento/fisiologia , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Rombencéfalo/citologia , Comportamento Estereotipado/fisiologia , Fatores Etários , Análise de Variância , Animais , Fenômenos Biomecânicos , Biofísica , Cálcio/metabolismo , Embrião não Mamífero , Feminino , Masculino , Microscopia Confocal , Morfolinos/farmacologia , Movimento/efeitos dos fármacos , Movimento/efeitos da radiação , Células Musculares/efeitos dos fármacos , Células Musculares/efeitos da radiação , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Vias Neurais/efeitos da radiação , Opsinas/química , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Rombencéfalo/fisiologia , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/efeitos da radiação , Fatores de Tempo , Peixe-Zebra
18.
EMBO J ; 28(23): 3758-70, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19875982

RESUMO

The ATP-dependent protein chaperone heat-shock protein 70 (Hsp70) displays broad anti-aggregation functions and has a critical function in preventing protein misfolding pathologies. According to in vitro and in vivo models of Parkinson's disease (PD), loss of Hsp70 activity is associated with neurodegeneration and the formation of amyloid deposits of alpha-synuclein (alphaSyn), which constitute the intraneuronal inclusions in PD patients known as Lewy bodies. Here, we show that Hsp70 depletion can be a direct result of the presence of aggregation-prone polypeptides. We show a nucleotide-dependent interaction between Hsp70 and alphaSyn, which leads to the aggregation of Hsp70, in the presence of ADP along with alphaSyn. Such a co-aggregation phenomenon can be prevented in vitro by the co-chaperone Hip (ST13), and the hypothesis that it might do so also in vivo is supported by studies of a Caenorhabditis elegans model of alphaSyn aggregation. Our findings indicate that a decreased expression of Hip could facilitate depletion of Hsp70 by amyloidogenic polypeptides, impairing chaperone proteostasis and stimulating neurodegeneration.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Homeostase/fisiologia , Complexos Multiproteicos/metabolismo , Doença de Parkinson/metabolismo , Proteínas Supressoras de Tumor/fisiologia , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/fisiologia , Amiloide/antagonistas & inibidores , Amiloide/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Chaperonas Moleculares , Complexos Multiproteicos/antagonistas & inibidores , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Doença de Parkinson/etiologia , Peptídeos/antagonistas & inibidores , Peptídeos/fisiologia , Dobramento de Proteína , Estabilidade Proteica , Ratos , Proteínas Supressoras de Tumor/antagonistas & inibidores , alfa-Sinucleína/antagonistas & inibidores
19.
HGG Adv ; 4(1): 100167, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36624813

RESUMO

To identify Lynch syndrome (LS) carriers, DNA mismatch repair (MMR) immunohistochemistry (IHC) is performed on colorectal cancers (CRCs). Upon subsequent LS diagnostics, MMR deficiency (MMRd) sometimes remains unexplained (UMMRd). Recently, the importance of complete LS diagnostics to explain UMMRd, involving MMR methylation, germline, and somatic analyses, was stressed. To explore why some MMRd CRCs remain unsolved, we performed a systematic review of the literature and mapped patients with UMMRd diagnosed in our center. A systematic literature search was performed in Ovid Medline, Embase, Web of Science, Cochrane CENTRAL, and Google Scholar for articles on UMMRd CRCs after complete LS diagnostics published until December 15, 2021. Additionally, UMMRd CRCs diagnosed in our center since 1993 were mapped. Of 754 identified articles, 17 were included, covering 74 patients with UMMRd. Five CRCs were microsatellite stable. Upon complete diagnostics, 39 patients had single somatic MMR hits, and six an MMR germline variant of unknown significance (VUS). Ten had somatic pathogenic variants (PVs) in POLD1, MLH3, MSH3, and APC. The remaining 14 patients were the only identifiable cases in the literature without a plausible identified cause of the UMMRd. Of those, nine were suspected to have LS. In our center, complete LS diagnostics in approximately 5,000 CRCs left seven MMRd CRCs unexplained. All had a somatic MMR hit or MMR germline VUS, indicative of a missed second MMR hit. In vitually all patients with UMMRd, complete LS diagnostics suggest MMR gene involvement. Optimizing detection of currently undetectable PVs and VUS interpretation might explain all UMMRd CRCs, considering UMMRd a case closed.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais/diagnóstico , Síndromes Neoplásicas Hereditárias/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico
20.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37561591

RESUMO

Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.


Assuntos
Cardiomiopatias , Proteínas dos Microfilamentos , Animais , Adesão Celular/genética , Proteínas dos Microfilamentos/genética , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Peixe-Zebra/genética , Transativadores , Cardiomiopatias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA