Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411283

RESUMO

We measured the impact of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Twelve healthy, male adults (age: 24 ± 3 years, body mass index: 23.7 ± 3.1 kg/m2 ) were subjected to 14 days of strict bed rest with unilateral blood flow restriction performed three times daily in three 5 min cycles (200 mmHg). Participants consumed deuterium oxide and we collected blood and saliva samples throughout 2 weeks of bed rest. Before and immediately after bed rest, lean body mass (dual-energy X-ray absorptiometry scan) and thigh muscle volume (magnetic resonance imaging scan) were assessed in both the blood flow restricted (BFR) and control (CON) leg. Muscle biopsies were collected and unilateral muscle strength (one-repetition maximum; 1RM) was assessed for both legs before and after the bed rest period. Bed rest resulted in 1.8 ± 1.0 kg lean body mass loss (P < 0.001). Thigh muscle volume declined from 7.1 ± 1.1 to 6.7 ± 1.0 L in CON and from 7.0 ± 1.1 to 6.7 ± 1.0 L in BFR (P < 0.001), with no differences between treatments (P = 0.497). In addition, 1RM leg extension strength decreased from 60.2 ± 10.6 to 54.8 ± 10.9 kg in CON and from 59.2 ± 12.1 to 52.9 ± 12.0 kg in BFR (P = 0.014), with no differences between treatments (P = 0.594). Muscle protein synthesis rates during bed rest did not differ between the BFR and CON leg (1.11 ± 0.12 vs. 1.08 ± 0.13%/day, respectively; P = 0.302). Two weeks of bed rest substantially reduces skeletal muscle mass and strength. Blood flow restriction during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. KEY POINTS: Bed rest, often necessary for recovery from illness or injury, leads to the loss of muscle mass and strength. It has been postulated that blood flow restriction may attenuate the loss of muscle mass and strength during bed rest. We investigated the effect of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Blood flow restriction applied during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. Blood flow restriction is not effective in preventing muscle atrophy during a prolonged period of bed rest.

2.
J Nutr ; 154(2): 479-490, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38092152

RESUMO

BACKGROUND: Postprandial metabolic responses following dairy consumption have mostly been studied using stand-alone dairy products or milk-derived nutrients. OBJECTIVE: Assessing the impact of ingesting dairy products as part of a common breakfast on postprandial aminoacidemia, glycemic control, markers of bone metabolism, and satiety. METHODS: In this randomized, crossover study, 20 healthy young males and females consumed on 3 separate occasions an iso-energetic breakfast containing no dairy (NO-D), 1 dairy (ONE-D), or 2 dairy (TWO-D) products. Postprandial concentrations of amino acids, glucose, insulin, glucagon-like peptide-1 (GLP-1), calcium, parathyroid hormone (PTH), and markers of bone formation (P1NP) and resorption (CTX-I) were measured before and up to 300 min after initiating the breakfast, along with VAS-scales to assess satiety. RESULTS: Plasma essential and branched-chained amino acids availability (expressed as total area under the curve (tAUC)) increased in a dose-dependent manner (P<0.05 for all comparisons). Plasma glucose tAUCs were lower in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons). Plasma GLP-1 tAUC increased in a dose-dependent manner (P<0.05 for all comparisons), whereas no differences were observed in plasma insulin tAUC between conditions (P>0.05 for all comparisons). Serum calcium tAUCs were higher in ONE-D and TWO-D compared with NO-D (P<0.05 for both comparisons), along with lower PTH tAUCs in ONE-D and TWO-D compared with NO-D (P=0.001 for both comparisons). In accordance, serum CTX-I concentrations were lower in the late postprandial period in ONE-D and TWO-D compared with NO-D (P<0.01 for both comparisons). No differences were observed in P1NP tAUCs between conditions (P>0.05). The tAUC for satiety was higher in TWO-D compared with NO-D and ONE-D (P<0.05 for both comparisons). CONCLUSIONS: Iso-energetic replacement of a carbohydrate-rich breakfast component with one serving of dairy improves postprandial amino acid availability, glycemic control, and bone metabolism. Adding a second serving of dairy in lieu of carbohydrates augments postprandial amino acid and GLP-1 concentrations while further promoting satiety. This study was registered at https://doi.org/10.1186/ISRCTN13531586 with Clinical Trial Registry number ISRCTN13531586.


Assuntos
Glicemia , Período Pós-Prandial , Masculino , Feminino , Animais , Glicemia/metabolismo , Desjejum , Estudos Cross-Over , Controle Glicêmico , Cálcio , Laticínios , Insulina , Leite/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Aminoácidos
3.
J Nutr ; 154(2): 554-564, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103646

RESUMO

BACKGROUND: Protein digestion and amino acid absorption appear compromised in critical illness. The provision of enteral feeds with free amino acids rather than intact protein may improve postprandial amino acid availability. OBJECTIVE: Our objective was to quantify the uptake of diet-derived phenylalanine after the enteral administration of intact protein compared with an equivalent amount of free amino acids in critically ill patients. METHODS: Sixteen patients who were mechanically ventilated in intensive care unit (ICU) at risk of malabsorption received a primed continuous infusion of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine after an overnight fast. Patients were randomly allocated to receive 20 g intrinsically L-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of amino acids labeled with free L-[1-13C]-phenylalanine via a nasogastric tube over a 2-h period. Protein digestion and amino acid absorption kinetics and whole-body protein net balance were assessed throughout a 6-h period. RESULTS: After enteral nutrient infusion, both plasma phenylalanine and leucine concentrations increased (P-time < 0.001), with a more rapid and greater rise after free amino acid compared with intact protein administration (P-time × treatment = 0.003). Diet-derived phenylalanine released into the circulation was 25% greater after free amino acids compared with intact protein administration [68.7% (confidence interval {CI}: 62.3, 75.1%) compared with 43.8% (CI: 32.4, 55.2%), respectively; P < 0.001]. Whole-body protein net balance became positive after nutrient administration (P-time < 0.001) and tended to be more positive after free amino acid in provision (P-time × treatment = 0.07). CONCLUSIONS: The administration of free amino acids as opposed to intact protein further increases postprandial plasma amino acid availability in critically ill patients, allowing more diet-derived phenylalanine to become available to peripheral tissues. This trial was registered at clinicaltrials.gov as NCT04791774.


Assuntos
Aminoácidos , Estado Terminal , Humanos , Estado Terminal/terapia , Proteínas Alimentares , Proteínas Musculares/metabolismo , Fenilalanina , Período Pós-Prandial
4.
Amino Acids ; 56(1): 8, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315260

RESUMO

Plant-derived proteins are generally believed to possess lesser anabolic properties when compared with animal-derived proteins. This is, at least partly, attributed to the lower leucine content of most plant-derived proteins. Corn protein has a leucine content that is highest among most plant-derived proteins and it even exceeds the levels observed in animal-derived proteins such as whey protein. Therefore, this study aimed to compare muscle protein synthesis rates following the ingestion of 30 g corn protein and a 30 g blend of corn plus milk protein with 30 g milk protein. In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received primed continuous L-[ring-13C6]-phenylalanine infusions and ingested 30 g corn protein (CORN), 30 g milk protein (MILK), or a 30 g proteinblend with 15 g corn plus 15 g milk protein (CORN + MILK). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. The results show that Ingestion of protein increased myofibrillar protein synthesis rates from basal post-absorptive values in all treatments(P < 0.001). Post-prandial myofibrillar protein synthesis rates did not differ between CORN vs MILK (0.053 ± 0.013 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.90), or between CORN + MILK vs MILK (0.052 ± 0.024 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.92). Ingestion of 30 g corn protein, 30 g milk protein, or a blend of 15 g corn plus 15 g milk protein robustly increases muscle protein synthesis rates in young males. The muscle protein synthetic response to the ingestion of 30 g corn-derived protein does not differ from the ingestion of an equivalent amount of milk protein in healthy, young males. Clinical Trial Registry number. NTR6548 (registration date: 27-06-2017) https://www.trialregister.nl/ .


Assuntos
Proteínas do Leite , Proteínas Musculares , Masculino , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Leucina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Humanos , Adulto Jovem , Adulto
5.
Eur J Nutr ; 63(3): 893-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228945

RESUMO

PURPOSE: Plant-derived proteins have received considerable attention as an alternative to animal-derived proteins. However, plant-derived proteins are considered to have less anabolic properties when compared with animal-derived proteins. The lower muscle protein synthesis rates following ingestion of plant- compared with animal-derived protein have been attributed to the lower essential amino acid content of plant-derived proteins and/or their specific amino acid deficiencies. This study aimed to compare post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein with 30 g milk-derived protein in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 young males (24 ± 3 y) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g pea (PEA) or 30 g milk-derived protein (MILK). Blood and muscle biopsies were collected frequently for 5 h to assess post-prandial plasma amino acid profiles and subsequent post-prandial muscle protein synthesis rates. RESULTS: MILK increased plasma essential amino acid concentrations more than PEA over the 5 h post-prandial period (incremental area under curve 151 ± 31 vs 102 ± 15 mmol∙300 min∙L-1, respectively; P < 0.001). Ingestion of both MILK and PEA showed a robust muscle protein synthetic response with no significant differences between treatments (0.053 ± 0.013 and 0.053 ± 0.017%∙h-1, respectively; P = 0.96). CONCLUSION: Post-prandial muscle protein synthesis rates following the ingestion of 30 g pea-derived protein do not differ from the response following ingestion of an equivalent amount of milk-derived protein. International Clinical Trials Registry Platform (NTR6548; 27-06-2017).


Assuntos
Proteínas do Leite , Pisum sativum , Masculino , Aminoácidos Essenciais/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Proteínas Musculares , Músculo Esquelético/metabolismo , Período Pós-Prandial , Adulto Jovem , Adulto
6.
Support Care Cancer ; 32(5): 325, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700712

RESUMO

People with advanced cancer and cachexia experience significant body weight loss, adversely impacting physical function and quality of life (QOL). Effective, evidence-based treatments for cancer cachexia are lacking, leaving patients with unmet needs. Exercise holds promise to improve patient QOL. However, information on patients' experiences of exercise, including their ability to cope with structured exercise, is limited. PURPOSE: To explore patient experiences completing a structured, supervised exercise program for people with cachexia due to advanced cancer. METHODS: Semi-structured interviews were conducted with participants enrolled in a phase II feasibility, randomized controlled trial to explore their experiences of an 8-week virtually supervised exercise program delivered via videoconference technology. Interviews were analysed using reflexive thematic analysis. RESULTS: Seventeen participants completed interviews (female n = 9, 53%). Main interview themes included the following: (1) Deciding to exercise involves balancing concerns and expectations, (2) the exercise program is a positive experience, and (3) moving forward after the exercise program. While some participants initially held doubts about their physical capabilities and exercise safety, most wanted to exercise to enhance their wellbeing. Participants described the exercise program as a positive experience, offering diverse benefits. Some would have preferred in-person exercise, but all agreed the virtual format increased convenience. Participants emphasized the need to recommend the program to others in similar circumstances. They underscored the necessity and desire for ongoing support to sustain their new exercise habits. CONCLUSION: Based on patient experiences, virtually supervised exercise programming appears to be feasible and meaningful to people with advanced cancer and cachexia.


Assuntos
Caquexia , Terapia por Exercício , Neoplasias , Pesquisa Qualitativa , Qualidade de Vida , Humanos , Caquexia/etiologia , Caquexia/terapia , Feminino , Neoplasias/complicações , Neoplasias/psicologia , Masculino , Pessoa de Meia-Idade , Terapia por Exercício/métodos , Idoso , Adulto , Estudos de Viabilidade , Comunicação por Videoconferência , Entrevistas como Assunto
7.
Gerontology ; 70(3): 290-301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38109855

RESUMO

INTRODUCTION: Microvascular perfusion is essential for post-exercise skeletal muscle recovery to ensure adequate delivery of nutrients and growth factors. This study assessed the relationship between various indices of muscle fiber capillarization and microvascular perfusion assessed by contrast-enhanced ultrasound (CEUS) at rest and during recovery from a bout of resistance exercise in older adults. METHODS: Sixteen older adults (72 ± 6 y, 5/11 male/female) participated in an experimental test day during which a muscle biopsy was collected from the vastus lateralis and microvascular perfusion was determined by CEUS at rest and at 10 and 40 min following a bout of resistance exercise. Immunohistochemistry was performed on muscle tissue samples to determine various indices of both mixed and fiber-type-specific muscle fiber capillarization. RESULTS: Microvascular blood volume at t = 10 min was higher compared with rest and t = 40 min (27.2 ± 4.7 vs. 3.9 ± 4.0 and 7.0 ± 4.9 AU, respectively, both p < 0.001). Microvascular blood volume at t = 40 min was higher compared with rest (p < 0.001). No associations were observed between different indices of mixed muscle fiber capillarization and microvascular blood volume at rest and following exercise. A moderate (r = 0.59, p < 0.05) and strong (r = 0.81, p < 0.001) correlation was observed between type II muscle fiber capillary-to-fiber ratio and the microvascular blood volume increase from rest to t = 10 and t = 40 min, respectively. In addition, type II muscle fiber capillary contacts and capillary-to-fiber perimeter exchange index were strongly correlated with the microvascular blood volume increase from rest to t = 40 min (r = 0.66, p < 0.01 and r = 0.64, p < 0.01, respectively). CONCLUSION: Resistance exercise strongly increases microvascular blood volume for at least 40 min after exercise cessation in older adults. This resistance exercise-induced increase in microvascular blood volume is strongly associated with type II muscle fiber capillarization in older adults.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Masculino , Feminino , Idoso , Músculo Esquelético/patologia , Ultrassonografia , Perfusão , Exercício Físico/fisiologia
8.
J Sports Sci ; 42(4): 313-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38478743

RESUMO

In contrast to male football players, research on the nutritional requirements of female football players is limited. This study aimed to assess total daily energy expenditure (TDEE) in professional female football players, along with body composition, physical activity and dietary intake. This observational study included 15 professional football players playing in the highest Dutch Women's League. TDEE was assessed by doubly labelled water over 14 days, along with resting metabolic rate (RMR; ventilated hood), fat-free mass (FFM; dual-energy x-ray absorptiometry), and dietary intake (24-h recalls). Physical activity energy expenditure (PAEE) was derived from subtracting RMR and estimated diet-induced thermogenesis (10%) from TDEE. TDEE was 2882 ± 278 kcal/day (58 ± 5 kcal/kg FFM) and significantly (p < 0.05) correlated with FFM (r = 0.62). PAEE was 1207 ± 213 kcal/d. Weighted energy intake was 2344 kcal [2023-2589]. Carbohydrate intakes were 3.2 ± 0.7, 4.4 ± 1.1 and 5.3 ± 1.9 g/kg body mass for rest, training and match days, respectively, while weighted mean protein intake was 1.9 ± 0.4 g/kg body mass. In conclusion, the energy requirements of professional female football players are moderate to high and can be explained by the substantial PAEE. To fuel these requirements, sports nutritionists should consider shifting the players' focus towards prioritizing adequate carbohydrate intakes, rather than emphasizing high protein consumption.


Assuntos
Metabolismo Basal , Composição Corporal , Proteínas Alimentares , Ingestão de Energia , Metabolismo Energético , Futebol , Humanos , Feminino , Metabolismo Energético/fisiologia , Ingestão de Energia/fisiologia , Futebol/fisiologia , Adulto Jovem , Adulto , Proteínas Alimentares/administração & dosagem , Metabolismo Basal/fisiologia , Países Baixos , Carboidratos da Dieta/administração & dosagem , Necessidades Nutricionais , Fenômenos Fisiológicos da Nutrição Esportiva , Exercício Físico/fisiologia , Termogênese/fisiologia , Dieta
9.
Int J Sport Nutr Exerc Metab ; 34(2): 122-134, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048764

RESUMO

Androgen deprivation therapy (ADT) forms the cornerstone in the treatment of advanced prostate cancer. However, by suppressing testosterone ADT results in a decrease of skeletal muscle mass. In this narrative review, we explore the magnitude and mechanisms of ADT-induced muscle mass loss and the consequences for muscle strength and physical performance. Subsequently, we elucidate the effectiveness of supervised resistance exercise training as a means to mitigate these adverse effects. Literature shows that resistance exercise training can effectively counteract ADT-induced loss of appendicular lean body mass and decline in muscle strength, while the effect on physical performances is inconclusive. As resistance exercise training is feasible and can be safely implemented during ADT (with special attention for patients with bone metastases), it should be incorporated in standard clinical care for prostate cancer patients (starting) with ADT.


Assuntos
Neoplasias da Próstata , Treinamento Resistido , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/induzido quimicamente , Treinamento Resistido/métodos , Antagonistas de Androgênios/efeitos adversos , Androgênios , Força Muscular/fisiologia , Composição Corporal , Músculos
10.
Int J Sport Nutr Exerc Metab ; 34(1): 38-47, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883634

RESUMO

This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.


Assuntos
Densidade Óssea , Colágeno Tipo I , Humanos , Masculino , Feminino , Colágeno Tipo I/farmacologia , Colágeno , Absorciometria de Fóton , Suplementos Nutricionais , Biomarcadores
11.
Int J Sport Nutr Exerc Metab ; 34(4): 223-231, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458181

RESUMO

This case study assessed body composition, muscle strength, cardiorespiratory fitness, and metabolic health of the present female world champion powerlifter in the 70+ age category who started resistance exercise training at 63 years of age with no prior experience with structured exercise training. Measures of body composition (magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry scanning, leg volume); strength (one-repetition maximum leg press and extension, maximum voluntary contraction, and handgrip strength); physical function (short physical performance battery); cardiorespiratory fitness (peak oxygen consumption); and metabolic health (oral glucose tolerance test) were assessed. In addition, a muscle biopsy was collected to assess muscle fiber type distribution and cross-sectional area (CSA). Where possible, data were compared with previously (un)published sex- and age-matched data using z scores. Skeletal muscle mass index was calculated by dividing limb muscle mass by height squared. Data from the control groups are expressed as mean ± 95% confidence interval. Our participant (age: 71 years; body mass: 64.5 kg; body mass index: 27.6 kg/m2) reported a good bone mineral density of 1.09 g/cm2 (T score between -1 and +1) and very low values of abdominal and organ body fat (i.e., between 20% and 70% lower compared with a reference group of postmenopausal women). In addition, she showed a 33% greater skeletal muscle mass index when compared with healthy, older female control subjects (7.9 vs. 5.9 [5.7-6.2] kg/m2; n = 61) as well as 37% greater muscle quadriceps CSA (63.8 vs. 46.6 [44.5-48.7] cm2; n = 48) and 46% greater Type II muscle fiber CSA (4,536 vs. 3,097 [2,707-3,488] µm2; n = 19). Absolute leg press muscle strength was 36% greater (190 vs. 140 [132-147] kg; n = 30) and handgrip strength was 33% greater (33 vs. 25 [23-26] kg; n = 48) when compared with healthy, age-matched controls. In conclusion, even for resistance exercise naïve individuals, starting exercise at an advanced age can lead to improvements in body composition and muscle strength allowing older adults to reduce the risk for developing metabolic syndrome, live independently, and even compete at a world class level.


Assuntos
Composição Corporal , Aptidão Cardiorrespiratória , Força Muscular , Músculo Esquelético , Treinamento Resistido , Humanos , Feminino , Idoso , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Densidade Óssea , Força da Mão , Consumo de Oxigênio , Absorciometria de Fóton , Levantamento de Peso/fisiologia , Teste de Tolerância a Glucose , Pessoa de Meia-Idade
12.
Int J Sport Nutr Exerc Metab ; 34(1): 11-19, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37875254

RESUMO

Resistance exercise training (RET) can be applied effectively to increase muscle mass and function in older adults (65-75 years). However, it has been speculated that older adults above 85 years are less responsive to the benefits of RET. This study compares the impact of RET on muscle mass and function in healthy older adults 65-75 years versus older adults above 85 years. We subjected 17 healthy older adults 65-75 years (OLDER 65-75, n = 13/4 [female/male]; 68 ± 2 years; 26.9 ± 2.3 kg/m2) and 12 healthy older adults above 85 years (OLDER 85+, n = 7/5 [female/male]; 87 ± 3 years; 26.0 ± 3.6 kg/m2) to 12 weeks of whole-body RET (three times per week). Prior to, and after 6 and 12 weeks of training, quadriceps and lumbar spine vertebra 3 muscle cross-sectional area (computed tomography scan), whole-body lean mass (dual-energy X-ray absorptiometry scan), strength (one-repetition maximum test), and physical performance (timed up and go and short physical performance battery) were assessed. Twelve weeks of RET resulted in a 10% ± 4% and 11% ± 5% increase in quadriceps cross-sectional area (from 46.5 ± 10.7 to 51.1 ± 12.1 cm2, and from 38.9 ± 6.1 to 43.1 ± 8.0 cm2, respectively; p < .001; η2 = .67); a 2% ± 3% and 2% ± 3% increase in whole-body lean mass (p = .001; η2 = .22); and a 38% ± 20% and 46% ± 14% increase in one-repetition maximum leg extension strength (p < .001; η2 = .77) in the OLDER 65-75 and OLDER 85+ groups, respectively. No differences in the responses to RET were observed between groups (Time × Group, all p > .60; all η2 ≤ .012). Physical performance on the short physical performance battery and timed up and go improved (both p < .01; η2 ≥ .22), with no differences between groups (Time × Group, p > .015; η2 ≤ .07). Prolonged RET increases muscle mass, strength, and physical performance in the aging population, with no differences between 65-75 years and 85+ years older adults.


Assuntos
Força Muscular , Treinamento Resistido , Humanos , Masculino , Feminino , Idoso , Força Muscular/fisiologia , Treinamento Resistido/métodos , Músculo Quadríceps , Exercício Físico/fisiologia , Composição Corporal , Músculo Esquelético/fisiologia
13.
Int J Sport Nutr Exerc Metab ; 34(4): 189-198, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604602

RESUMO

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.


Assuntos
Colágeno , Estudos Cross-Over , Glicina , Proteínas do Soro do Leite , Humanos , Proteínas do Soro do Leite/administração & dosagem , Masculino , Adulto , Glicina/sangue , Glicina/administração & dosagem , Método Duplo-Cego , Adulto Jovem , Período Pós-Prandial , Exercício Físico/fisiologia , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Aminoácidos/sangue , Aminoácidos/administração & dosagem , Músculo Esquelético/metabolismo
14.
J Physiol ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293995

RESUMO

Skeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse-induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single-limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate. Compared with the contralateral control limb, 3 days of immobilization lowered myofibrillar fractional synthesis rates (FSR, P < 0.0001), resulting in muscle atrophy. Although FSR and mitophagy-related proteins were higher in subsarcolemmal (SS) compared with intermyofibrillar (IMF) mitochondria, immobilization for 3 days decreased FSR in both SS (P = 0.009) and IMF (P = 0.031) mitochondria. Additionally, 3 days of immobilization reduced maximal mitochondrial respiration, decreased mitochondrial protein content, and increased maximal mitochondrial reactive oxygen species emission, without altering mitophagy-related proteins in muscle homogenate or isolated mitochondria (SS and IMF). Although nitrate consumption did not attenuate the decline in muscle mass or myofibrillar FSR, intriguingly, nitrate completely prevented immobilization-induced reductions in SS and IMF mitochondrial FSR. In addition, nitrate prevented alterations in mitochondrial content and bioenergetics after both 3 and 7 days of immobilization. However, in contrast to 3 days of immobilization, nitrate did not prevent the decline in SS and IMF mitochondrial FSR after 7 days of immobilization. Therefore, although nitrate supplementation was not sufficient to prevent muscle atrophy, nitrate may represent a promising therapeutic strategy to maintain mitochondrial bioenergetics and transiently preserve mitochondrial protein synthesis rates during short-term muscle disuse. KEY POINTS: Alterations in mitochondrial bioenergetics (decreased respiration and increased reactive oxygen species) are thought to contribute to muscle atrophy and reduced protein synthesis rates during muscle disuse. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation could attenuate immobilization-induced skeletal muscle impairments in female mice. Dietary nitrate prevented short-term (3 day) immobilization-induced declines in mitochondrial protein synthesis rates, reductions in markers of mitochondrial content, and alterations in mitochondrial bioenergetics. Despite these benefits and the preservation of mitochondrial content and bioenergetics during more prolonged (7 day) immobilization, nitrate consumption did not preserve skeletal muscle mass or myofibrillar protein synthesis rates. Overall, although dietary nitrate did not prevent atrophy, nitrate supplementation represents a promising nutritional approach to preserve mitochondrial function during muscle disuse.

15.
J Nutr ; 153(1): 66-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913480

RESUMO

BACKGROUND: Ingestion of protein concentrates or isolates increases muscle protein synthesis rates in young and older adults. There is far less information available on the anabolic response following the ingestion of dairy wholefoods, which are commonly consumed in a normal diet. OBJECTIVES: This study investigates whether ingestion of 30 g protein provided as quark increases muscle protein synthesis rates at rest and whether muscle protein synthesis rates are further increased after resistance exercise in young and older adult males. METHODS: In this parallel-group intervention trial, 14 young (18-35 y) and 15 older (65-85 y) adult males ingested 30 g protein provided as quark after a single-legged bout of resistance exercise on leg press and leg extension machines. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data represent means ± SDs; η2 was used to measure the effect size. RESULTS: Plasma total amino acid and leucine concentrations increased after quark ingestion in both groups (both time: P < 0.001; η2 > 0.8), with no differences between groups (time × group: P = 0.127 and P = 0.172, respectively; η2<0.1). Muscle protein synthesis rates increased following quark ingestion at rest in both young (from 0.030 ± 0.011 to 0.051 ± 0.011 %·h-1) and older adult males (from 0.036 ± 0.011 to 0.062 ± 0.013 %·h-1), with a further increase in the exercised leg (to 0.071 ± 0.023 %·h-1 and to 0.078 ± 0.019 %·h-1, respectively; condition: P < 0.001; η2 = 0.716), with no differences between groups (condition × group: P = 0.747; η2 = 0.011). CONCLUSIONS: Quark ingestion increases muscle protein synthesis rates at rest with a further increase following exercise in both young and older adult males. The postprandial muscle protein synthetic response following quark ingestion does not differ between healthy young and older adult males when an ample amount of protein is ingested. This trial was registered at the Dutch Trial register, which is accessible via trialsearch.who.int www.trialregister.nl as NL8403.


Assuntos
Proteínas Musculares , Treinamento Resistido , Masculino , Humanos , Proteínas Musculares/metabolismo , Método Duplo-Cego , Leucina/metabolismo , Músculo Esquelético/metabolismo , Ingestão de Alimentos , Proteínas Alimentares/metabolismo , Período Pós-Prandial
16.
J Nutr ; 153(6): 1718-1729, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277162

RESUMO

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Assuntos
Vicia faba , Masculino , Humanos , Animais , Camundongos , Vicia faba/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Inteligência Artificial , Força Muscular , Imobilização/métodos , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Suplementos Nutricionais , Peptídeos/metabolismo , Músculo Esquelético/metabolismo
17.
J Nutr ; 152(12): 2734-2743, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36170964

RESUMO

BACKGROUND: Plant-derived proteins are considered to have lesser anabolic properties when compared with animal-derived proteins. The attenuated rise in muscle protein synthesis rates following ingestion of plant-derived compared with animal-derived protein has been, at least partly, attributed to deficiencies in specific amino acids such as leucine, lysine, and/or methionine. Combining different plant-derived proteins could provide plant-derived protein blends with a more balanced amino acid profile. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following the ingestion of 30 g milk protein with a 30 g blend combining wheat, corn, and pea protein in healthy young men. METHODS: In a randomized, double-blind, parallel-group design, 24 young males (aged 24 ± 4 y) received a primed continuous l-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK) or a 30 g plant-derived protein blend combining 15 g wheat, 7.5 g corn, and 7.5 g pea protein (PLANT-BLEND). Blood and muscle biopsies were collected frequently for 5 h to assess postprandial plasma amino acid profiles (secondary outcome) and subsequent muscle protein synthesis rates (primary outcome). Data were analyzed by 2-factor repeated measures ANOVA and 2-samples t tests. RESULTS: MILK increased plasma essential amino acid concentrations more than PLANT-BLEND over the 5 h postprandial period (incremental AUC = 151 ± 31 compared with 79 ± 12 mmol·300 min·L-1, respectively; P < 0.001). Ingestion of both MILK and PLANT-BLEND increased myofibrillar protein synthesis rates (P < 0.001), with no significant differences between treatments (0.053 ± 0.013%/h and 0.064 ± 0.016%/h, respectively; P = 0.08). CONCLUSIONS: Ingestion of 30 g plant-derived protein blend combining wheat-, corn-, and pea-derived protein increases muscle protein synthesis rates in healthy young males. The muscle protein synthetic response to the ingestion of 30 g of this plant-derived protein blend does not differ from the ingestion of an equivalent amount of a high-quality animal-derived protein.Clinical trial registry number for Nederlands Trial Register: NTR6548 (https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6548).


Assuntos
Proteínas do Leite , Proteínas de Ervilha , Animais , Masculino , Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ervilha/metabolismo , Proteínas de Plantas/metabolismo , Período Pós-Prandial , Método Duplo-Cego
18.
J Nutr ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972895

RESUMO

BACKGROUND: Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS: In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS: MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS: Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.

19.
FASEB J ; 36(12): e22642, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374263

RESUMO

Skeletal muscle is maintained and repaired by sub-laminar, Pax7-expressing satellite cells. However, recent mouse investigations have described a second myogenic progenitor population that resides within the myofiber interstitium and expresses the transcription factor Twist2. Twist2-expressing cells exclusively repair and maintain type IIx/b muscle fibers. Currently, it is unknown if Twist2-expressing cells are present in human skeletal muscle and if they function as myogenic progenitors. Here, we perform a combination of single-cell RNA sequencing analysis and immunofluorescence staining to demonstrate the identity and localization of Twist2-expressing cells in human skeletal muscle. Twist2-expressing cells were identified to be anatomically and transcriptionally comparable to fibro-adipogenic progenitors (FAPs) and lack expression of typical satellite cell markers such as Pax7. Comparative analysis revealed that human and mouse Twist2-expressing cells were highly transcriptionally analogous and resided within the same anatomical structures in vivo. Examination of young and aged skeletal muscle biopsy samples revealed that Twist2-positive cells are more prevalent in aged muscle and increase following 12-weeks of resistance exercise training (RET) in humans. However, the quantity of Twist2-positive cells was not correlated with indices of muscle mass or muscle fiber cross-sectional area (CSA) in young or older muscle, and their abundance was surprisingly, negatively correlated with CSA and myonuclear domain size following RET. Taken together, we have identified cells expressing Twist2 in human skeletal muscle which are responsive to aging and exercise. Further examination of their myogenic potential is warranted.


Assuntos
Treinamento Resistido , Células Satélites de Músculo Esquelético , Humanos , Camundongos , Animais , Idoso , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Desenvolvimento Muscular , Envelhecimento , Células Satélites de Músculo Esquelético/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
20.
Eur J Nutr ; 62(2): 921-940, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36326863

RESUMO

PURPOSE: To determine the effects of dietary sugar or carbohydrate restriction on physical activity energy expenditure, energy intake, and physiological outcomes across 24 h. METHODS: In a randomized, open-label crossover design, twenty-five healthy men (n = 10) and women (n = 15) consumed three diets over a 24-h period: moderate carbohydrate and sugar content (MODSUG = 50% carbohydrate [20% sugars], 15% protein, 35% fat); low sugar content (LOWSUG = 50% carbohydrate [< 5% sugars], 15% protein, 35% fat); and low carbohydrate content (LOWCHO = 8% carbohydrate [< 5% sugars], 15% protein, 77% fat). Postprandial metabolic responses to a prescribed breakfast (20% EI) were monitored under laboratory conditions before an ad libitum test lunch, with subsequent diet and physical activity monitoring under free-living conditions until blood sample collection the following morning. RESULTS: The MODSUG, LOWSUG and LOWCHO diets resulted in similar mean [95%CI] rates of both physical activity energy expenditure (771 [624, 919] vs. 677 [565, 789] vs. 802 [614, 991] kcal·d-1; p = 0.29] and energy intake (2071 [1794, 2347] vs. 2195 [1918, 2473] vs. 2194 [1890, 2498] kcal·d-1; P = 0.34), respectively. The LOWCHO condition elicited the lowest glycaemic and insulinaemic responses to breakfast (P < 0.01) but the highest 24-h increase in LDL-cholesterol concentrations (P < 0.001), with no differences between the MODSUG and LOWSUG treatments. Leptin concentrations decreased over 24-h of consuming LOWCHO relative to LOWSUG (p < 0.01). CONCLUSION: When energy density is controlled for, restricting either sugar or total dietary carbohydrate does not modulate physical activity level or energy intake over a 24-h period (~ 19-h free-living) despite substantial metabolic changes. CLINICAL TRIALS REGISTRATION ID: NCT03509610, https://clinicaltrials.gov/show/NCT03509610.


Assuntos
Ingestão de Energia , Açúcares , Masculino , Humanos , Feminino , Estudos Cross-Over , Dieta , Carboidratos da Dieta , Metabolismo Energético , Exercício Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA