Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 18(4): e10680, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467080

RESUMO

While CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherichia coli across multiple generations. We observed that CRISPR interference is fast with a narrow distribution of clearance times. In contrast, for invaders with escaping PAM mutations we found large cell-to-cell variability, which originates from primed CRISPR adaptation. Faster growth and cell division and higher levels of Cascade increase the chance of clearance by interference, while slower growth is associated with increased chances of clearance by priming. Our findings suggest that Cascade binding to the mutated invader DNA, rather than spacer integration, is the main source of priming heterogeneity. The highly stochastic nature of primed CRISPR adaptation implies that only subpopulations of bacteria are able to respond quickly to invading threats. We conjecture that CRISPR-Cas dynamics and heterogeneity at the cellular level are crucial to understanding the strategy of bacteria in their competition with other species and phages.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Adaptação Fisiológica/genética , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Nucleic Acids Res ; 46(6): 3187-3197, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29325071

RESUMO

RNA interference (RNAi) is an indispensable mechanism for antiviral defense in insects, including mosquitoes that transmit human diseases. To escape this antiviral defense system, viruses encode suppressors of RNAi that prevent elimination of viral RNAs, and thus ensure efficient virus accumulation. Although the first animal Viral Suppressor of RNAi (VSR) was identified more than a decade ago, the molecular basis of RNAi suppression by these viral proteins remains unclear. Here, we developed a single-molecule fluorescence assay to investigate how VSRs inhibit the recognition of viral RNAs by Dcr-2, a key endoribonuclease enzyme in the RNAi pathway. Using VSRs from three insect RNA viruses (Culex Y virus, Drosophila X virus and Drosophila C virus), we reveal bimodal physical interactions between RNA molecules and VSRs. During initial interactions, these VSRs rapidly discriminate short RNA substrates from long dsRNA. VSRs engage nearly irreversible binding with long dsRNAs, thereby shielding it from recognition by Dcr-2. We propose that the length-dependent switch from rapid screening to irreversible binding reflects the main mechanism by which VSRs distinguish viral dsRNA from cellular RNA species such as microRNAs.


Assuntos
Entomobirnavirus/genética , MicroRNAs/genética , Interferência de RNA , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Animais , Humanos , MicroRNAs/metabolismo , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Células Sf9 , Spodoptera , Receptores Chamariz do Fator de Necrose Tumoral/genética , Receptores Chamariz do Fator de Necrose Tumoral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Nat Commun ; 14(1): 7337, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957172

RESUMO

The PIWI-interacting RNA (piRNA) pathway prevents endogenous genomic parasites, i.e. transposable elements, from damaging the genetic material of animal gonadal cells. Specific regions in the genome, called piRNA clusters, are thought to define each species' piRNA repertoire and therefore its capacity to recognize and silence specific transposon families. The unistrand cluster flamenco (flam) is essential in the somatic compartment of the Drosophila ovary to restrict Gypsy-family transposons from infecting the neighbouring germ cells. Disruption of flam results in transposon de-repression and sterility, yet it remains unknown whether this silencing mechanism is present more widely. Here, we systematically characterise 119 Drosophila species and identify five additional flam-like clusters separated by up to 45 million years of evolution. Small RNA-sequencing validated these as bona-fide unistrand piRNA clusters expressed in somatic cells of the ovary, where they selectively target transposons of the Gypsy family. Together, our study provides compelling evidence of a widely conserved transposon silencing mechanism that co-evolved with virus-like Gypsy-family transposons.


Assuntos
Proteínas de Drosophila , Retrovirus Endógenos , Humanos , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , RNA de Interação com Piwi , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA