Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(34): 13033-13043, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29925588

RESUMO

The catalytic performance of the major CO2-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO2 sequestration in polar cold waters. Until now, the biochemical properties and three-dimensional structures of Rubisco from diatoms were unknown. Here, diatoms from arctic waters were collected, cultivated, and analyzed for their CO2-fixing capability. We characterized the kinetic properties of five and determined the crystal structures of four Rubiscos selected for their high CO2-fixing efficiency. The DNA sequences of the rbcL and rbcS genes of the selected diatoms were similar, reflecting their close phylogenetic relationship. The Vmax and Km for the oxygenase and carboxylase activities at 25 °C and the specificity factors (Sc/o) at 15, 25, and 35 °C were determined. The Sc/o values were high, approaching those of mono- and dicot plants, thus exhibiting good selectivity for CO2 relative to O2 Structurally, diatom Rubiscos belong to form I C/D, containing small subunits characterized by a short ßA-ßB loop and a C-terminal extension that forms a ß-hairpin structure (ßE-ßF loop). Of note, the diatom Rubiscos featured a number of posttranslational modifications of the large subunit, including 4-hydroxyproline, ß-hydroxyleucine, hydroxylated and nitrosylated cysteine, mono- and dihydroxylated lysine, and trimethylated lysine. Our studies suggest adaptation toward achieving efficient CO2 fixation in arctic diatom Rubiscos.


Assuntos
Dióxido de Carbono/metabolismo , Diatomáceas/enzimologia , Processamento de Proteína Pós-Traducional , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Cristalografia por Raios X , Hidroxilação , Cinética , Nitrosação , Filogenia , Conformação Proteica , Dobramento de Proteína , Ribulose-Bifosfato Carboxilase/genética , Relação Estrutura-Atividade
2.
J Am Chem Soc ; 136(8): 3165-71, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24495214

RESUMO

Protein-gas interactions are important in biology. The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes two competing reactions involving CO2 and O2 as substrates. Carboxylation of the common substrate ribulose-1,5-bisphosphate leads to photosynthetic carbon assimilation, while the oxygenation reaction competes with carboxylation and reduces photosynthetic productivity. The migration of the two gases in and around Rubisco was investigated using molecular dynamics simulations. The results indicate that at equal concentrations of the gases, Rubisco binds CO2 stronger than it does O2. Amino acids with small hydrophobic side chains are the most proficient in attracting CO2, indicating a significant contribution of the hydrophobic effect in the interaction. On average, residues in the small subunit bind approximately twice as much CO2 as do residues in the large subunit. We did not detect any cavities that would provide a route to the active site for the gases. Instead, CO2 appears to be guided toward the active site through a CO2 binding region around the active site opening that extends to the closest neighboring small subunits. Taken together, these results suggest the small subunit may function as a "reservoir" for CO2 storage.


Assuntos
Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos/metabolismo , Domínio Catalítico , Modelos Moleculares , Simulação de Dinâmica Molecular
3.
J Mol Biol ; 358(2): 546-58, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16527306

RESUMO

Cephamycin C-producing microorganisms use two enzymes to convert cephalosporins to their 7alpha-methoxy derivatives. Here we report the X-ray structure of one of these enzymes, CmcI, from Streptomyces clavuligerus. The polypeptide chain of the enzyme folds into a C-terminal Rossmann domain and a smaller N-terminal domain, and the molecule packs as a hexamer in the crystal. The Rossmann domain binds S-adenosyl-L-methionine (SAM) and the demethylated product, S-adenosyl-L-homocysteine, in a fashion similar to the common binding mode of this cofactor in SAM-dependent methyltransferases. There is a magnesium-binding site in the vicinity of the SAM site with a bound magnesium ion ligated by residues Asp160, Glu186 and Asp187. The expected cephalosporin binding site near the magnesium ion is occupied by polyethyleneglycol (PEG) from the crystallisation medium. The geometry of the SAM and the magnesium binding sites is similar to that found in cathechol O-methyltransferase. The results suggest CmcI is a methyltransferase, and its most likely function is to catalyse the transfer of a methyl group from SAM to the 7alpha-hydroxy cephalosporin in the second catalytic reaction of cephamycin formation. Based on the docking of the putative substrate, 7alpha-hydroxy-O-carbamoyldeacetylcephalosporin C, to the structure of the ternary CmcI-Mg2+-SAM complex, we propose a model for substrate binding and catalysis. In this model, the 7-hydroxy group of the beta-lactam ring ligates the Mg2+ with its alpha-side facing the methyl group of SAM at a distance that would allow methylation of the hydroxyl-group.


Assuntos
Proteínas de Bactérias/biossíntese , Cefamicinas/biossíntese , Metiltransferases/química , Oxigenases de Função Mista/química , Complexos Multienzimáticos/química , Streptomyces/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cefalosporinas/metabolismo , Cristalização , Cristalografia por Raios X , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polietilenoglicóis , Ligação Proteica , Estrutura Terciária de Proteína , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos
4.
J Mol Biol ; 411(5): 1083-98, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21745478

RESUMO

Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) plays an important role in the global carbon cycle as a hub for biomass. Rubisco catalyzes not only the carboxylation of RuBP with carbon dioxide but also a competing oxygenation reaction of RuBP with a negative impact on photosynthetic yield. The functional active site is built from two large (L) subunits that form a dimer. The octameric core of four L(2) dimers is held at each end by a cluster of four small (S) subunits, forming a hexadecamer. Each large subunit contacts more than one S subunit. These interactions exploit the dynamic flexibility of Rubisco, which we address in this study. Here, we describe seven different types of interfaces of hexadecameric Rubisco. We have analyzed these interfaces with respect to the size of the interface area and the number of polar interactions, including salt bridges and hydrogen bonds in a variety of Rubisco enzymes from different organisms and different kingdoms of life, including the Rubisco-like proteins. We have also performed molecular dynamics simulations of Rubisco from Chlamydomonas reinhardtii and mutants thereof. From our computational analyses, we propose structural checkpoints of the S subunit to ensure the functionality and/or assembly of the Rubisco holoenzyme. These checkpoints appear to fine-tune the dynamics of the enzyme in a way that could influence enzyme performance.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Catálise , Chlamydomonas reinhardtii/genética , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas , Ribulose-Bifosfato Carboxilase/genética , Ribulosefosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA