Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 71(12): 3416-3419, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27559117

RESUMO

BACKGROUND: Recently, the first plasmid-mediated colistin-resistance gene, mcr-1, was reported. Colistin is increasingly used as an antibiotic of last resort for the treatment of infections caused by carbapenem-resistant bacteria, which have been rapidly disseminating worldwide in recent years. OBJECTIVES: The reported carriage rate of mcr-1 in humans remains sporadic thus far, except for those reported in Chinese populations. We aimed to determine its presence in the faecal metagenomes of healthy Dutch travellers between 2010 and 2012. METHODS: Faecal metagenomic DNA of pre- and post-travel samples from 122 healthy Dutch long-distance travellers was screened for the presence of mcr-1 using a TaqMan quantitative PCR assay, which was designed in this study. All positive samples were confirmed by sequencing of the amplicons. RESULTS: The mcr-1 gene was detected in 6 (4.9%, 95% CI = 2.1%-10.5%) of 122 healthy Dutch long-distance travellers after they had visited destinations in South(-east) Asia or southern Africa between 2011 and 2012. One of these participants was already found to be positive before travel. CONCLUSIONS: Our study highlights the potential of PCR-based targeted metagenomics as an unbiased and sensitive method to screen for the carriage of the mcr-1 gene and suggests that mcr-1 is widespread in various parts of the world. The observation that one participant was found to be positive before travel suggests that mcr-1 may already have disseminated to the microbiomes of Dutch residents at a low prevalence, warranting a more extensive investigation of its prevalence in the general population and possible sources.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Fezes/microbiologia , Genes Bacterianos , Metagenômica , Viagem , Adulto , África Austral , Idoso , Sudeste Asiático , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Adulto Jovem
2.
Sci Rep ; 9(1): 6949, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061446

RESUMO

Vancomycin-resistant enterococci (VRE) can rapidly spread through hospitals. Therefore, our hospital employs a screening program whereby rectal swabs are screened for the presence of vanA and vanB, and only PCR-positive broths are cultured on VRE selection agar. Early November 2016, a clinical vanA-/vanB-negative VRE isolate was detected in a vanA/vanB-screening-negative patient, giving the possibility that an undetected VRE might be spreading within our hospital. Whole-genome-sequencing of the isolate showed that resistance was vanD-mediated and core genome multilocus sequence typing showed it was a rare type: ST17/CT154. To determine the prevalence of vanA/B/C/D-carrying enterococci, we designed a real-time PCR for vanC1/2/3 and vanD and screened rectal swabs from 360 patients. vanD was found in 27.8% of the patients, yet culture demonstrated only E. faecium from vanA-positive broths and E. gallinarum from vanC1-positive broths. No vanD-positive VRE were found, limiting the possibility of nosocomial spread of this VRE. Moreover, the high prevalence of non-VRE vanD in rectal swabs makes it unfeasible to include the vanD PCR in our VRE screening. However, having validated the vanC1/2/3 and vanD PCRs allows us to rapidly check future vanA/B-negative VRE for the presence of vanC and vanD genes.


Assuntos
Proteínas de Bactérias/genética , Infecção Hospitalar , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Peptídeo Sintases/genética , Centros de Atenção Terciária , Enterococcus faecium/classificação , Enterococcus faecium/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Filogenia , Prevalência , Vigilância em Saúde Pública , Índice de Gravidade de Doença , Resistência a Vancomicina , Enterococos Resistentes à Vancomicina
3.
Front Microbiol ; 7: 173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925045

RESUMO

The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria-and also mobile genetic elements and bacteriophages-form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA