Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(9): 096805, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610875

RESUMO

Hybridization-related modifications of the first metal layer of a metal-organic interface are difficult to access experimentally and have been largely neglected so far. Here, we study the influence of specific chemical bonds (as formed by the organic molecules CuPc and PTCDA) on a Pb-Ag surface alloy. We find that delocalized van der Waals or weak chemical π-type bonds are not strong enough to alter the alloy, while localized σ-type bonds lead to a vertical displacement of the Pb surface atoms and to changes in the alloy's surface band structure. Our results provide an exciting platform for tuning the Rashba-type spin texture of surface alloys using organic molecules.

2.
ACS Catal ; 11(5): 2774-2785, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33842021

RESUMO

The development of efficient and stable earth-abundant water oxidation catalysts is vital for economically feasible water-splitting systems. Cobalt phosphate (CoPi)-based catalysts belong to the relevant class of nonprecious electrocatalysts studied for the oxygen evolution reaction (OER). In this work, an in-depth investigation of the electrochemical activation of CoPi-based electrocatalysts by cyclic voltammetry (CV) is presented. Atomic layer deposition (ALD) is adopted because it enables the synthesis of CoPi films with cobalt-to-phosphorous ratios between 1.4 and 1.9. It is shown that the pristine chemical composition of the CoPi film strongly influences its OER activity in the early stages of the activation process as well as after prolonged exposure to the electrolyte. The best performing CoPi catalyst, displaying a current density of 3.9 mA cm-2 at 1.8 V versus reversible hydrogen electrode and a Tafel slope of 155 mV/dec at pH 8.0, is selected for an in-depth study of the evolution of its electrochemical properties, chemical composition, and electrochemical active surface area (ECSA) during the activation process. Upon the increase of the number of CV cycles, the OER performance increases, in parallel with the development of a noncatalytic wave in the CV scan, which points out to the reversible oxidation of Co2+ species to Co3+ species. X-ray photoelectron spectroscopy and Rutherford backscattering measurements indicate that phosphorous progressively leaches out the CoPi film bulk upon prolonged exposure to the electrolyte. In parallel, the ECSA of the films increases by up to a factor of 40, depending on the initial stoichiometry. The ECSA of the activated CoPi films shows a universal linear correlation with the OER activity for the whole range of CoPi chemical composition. It can be concluded that the adoption of ALD in CoPi-based electrocatalysis enables, next to the well-established control over film growth and properties, to disclose the mechanisms behind the CoPi electrocatalyst activation.

3.
J Phys Chem C Nanomater Interfaces ; 122(39): 22519-22529, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30319724

RESUMO

This work investigates the role of the co-reactant for the atomic layer deposition of cobalt (Co) films using cobaltocene (CoCp2) as the precursor. Three different processes were compared: an AB process using NH3 plasma, an AB process using H2/N2 plasma, and an ABC process using subsequent N2 and H2 plasmas. A connection was made between the plasma composition and film properties, thereby gaining an understanding of the role of the various plasma species. For NH3 plasma, H2 and N2 were identified as the main species apart from the expected NH3, whereas for the H2/N2 plasma, NH3 was detected. Moreover, HCp was observed as a reaction product in the precursor and co-reactant subcycles. Both AB processes showed self-limiting half-reactions and yielded similar material properties, that is, high purity and low resistivity. For the AB process with H2/N2, the resistivity and impurity content depended on the H2/N2 mixing ratio, which was linked to the production of NH3 molecules and related radicals. The ABC process resulted in high-resistivity and low-purity films, attributed to the lack of NH x,x≤3 species during the co-reactant exposures. The obtained insights are summarized in a reaction scheme where CoCp2 chemisorbs in the precursor subcycle and NH x species eliminate the remaining Cp in the consecutive subcycle.

4.
ACS Nano ; 11(10): 10495-10508, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28902494

RESUMO

The current study generates profound atomistic insights into doping-induced changes of the optical and electronic properties of the prototypical PTCDA/Ag(111) interface. For doping K atoms are used, as KxPTCDA/Ag(111) has the distinct advantage of forming well-defined stoichiometric phases. To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we combine state-of-the-art density-functional theory calculations with optical differential reflectance data, photoelectron spectra, and X-ray standing wave measurements. In combination with the full structural characterization of the KxPTCDA/Ag(111) interface by low-energy electron diffraction and scanning tunneling microscopy experiments (ACS Nano 2016, 10, 2365-2374), the present comprehensive study provides access to a fully characterized reference system for a well-defined metal-organic interface in the presence of dopant atoms, which can serve as an ideal benchmark for future research and applications. The combination of the employed complementary techniques allows us to understand the peculiarities of the optical spectra of K2PTCDA/Ag(111) and their counterintuitive similarity to those of neutral PTCDA layers. They also clearly describe the transition from a metallic character of the (pristine) adsorbed PTCDA layer on Ag(111) to a semiconducting state upon doping, which is the opposite of the effect (degenerate) doping usually has on semiconducting materials. All experimental and theoretical efforts also unanimously reveal a reduced electronic coupling between the adsorbate and the substrate, which goes hand in hand with an increasing adsorption distance of the PTCDA molecules caused by a bending of their carboxylic oxygens away from the substrate and toward the potassium atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA