Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(6): 5669-5682, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38288878

RESUMO

Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.

2.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37093991

RESUMO

The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.

3.
J Am Chem Soc ; 144(38): 17597-17603, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106369

RESUMO

Multifrequency electron paramagnetic resonance spectroscopy on oriented single crystals of magnetically dilute Gd(III) ions in Gd0.004Y0.996(trensal) is used to determine the Hamiltonian parameters of the ground 8S7/2 term and its phase memory time, Tm, characterizing its coherent spin dynamics. The vanishing orbital angular momentum of the 8S7/2 term makes it relatively insensitive to spin-lattice relaxation mediated by magnetoelastic coupling and leads to a Tm of 12 µs at 3 K, which is not limited by spin-lattice relaxation.

4.
Angew Chem Int Ed Engl ; 61(12): e202114103, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35019217

RESUMO

Efficiently hyperpolarizing proton-dense molecular solids through dynamic nuclear polarization (DNP) solid-state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton-rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol-POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U-13 C,15 N-labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol-POK is rationalized by MAS-DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of 13 C-13 C and 15 N-13 C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.


Assuntos
Prótons , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas
5.
Phys Chem Chem Phys ; 23(24): 13768-13769, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34115087

RESUMO

Correction for 'De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization' by Frédéric Mentink-Vigier et al., Phys. Chem. Chem. Phys., 2019, 21, 2166-2176, DOI: 10.1039/C8CP06819D.

6.
Phys Rev Lett ; 124(1): 017201, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976706

RESUMO

We lay the foundation for determining the microscopic spin interactions in two-dimensional (2D) ferromagnets by combining angle-dependent ferromagnetic resonance (FMR) experiments on high quality CrI_{3} single crystals with theoretical modeling based on symmetries. We discover that the Kitaev interaction is the strongest in this material with K∼-5.2 meV, 25 times larger than the Heisenberg exchange J∼-0.2 meV, and responsible for opening the ∼5 meV gap at the Dirac points in the spin-wave dispersion. Furthermore, we find that the symmetric off-diagonal anisotropy Γ∼-67.5 µeV, though small, is crucial for opening a ∼0.3 meV gap in the magnon spectrum at the zone center and stabilizing ferromagnetism in the 2D limit. The high resolution of the FMR data further reveals a µeV-scale quadrupolar contribution to the S=3/2 magnetism. Our identification of the underlying exchange anisotropies opens paths toward 2D ferromagnets with higher T_{C} as well as magnetically frustrated quantum spin liquids based on Kitaev physics.

7.
Phys Chem Chem Phys ; 21(38): 21200-21204, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310269

RESUMO

Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (∼0.1 ppm) and relatively large sample volume (∼100 µL).

8.
Phys Chem Chem Phys ; 21(4): 2166-2176, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644474

RESUMO

Magic angle spinning dynamic nuclear polarization (MAS-DNP) has become a key approach to boost the intrinsic low sensitivity of NMR in solids. This method relies on the use of both stable radicals as polarizing agents (PAs) and suitable high frequency microwave irradiation to hyperpolarize nuclei of interest. Relating PA chemical structure to DNP efficiency has been, and is still, a long-standing problem. The complexity of the polarization transfer mechanism has so far limited the impact of analytical derivation. However, recent numerical approaches have profoundly improved the basic understanding of the phenomenon and have now evolved to a point where they can be used to help design new PAs. In this work, the potential of advanced MAS-DNP simulations combined with DFT calculations and high-field EPR to qualitatively and quantitatively predict hyperpolarization efficiency of particular PAs is analyzed. This approach is demonstrated on AMUPol and TEKPol, two widely-used bis-nitroxide PAs. The results notably highlight how the PA structure and EPR characteristics affect the detailed shape of the DNP field profile. We also show that refined simulations of this profile using the orientation dependency of the electron spin-lattice relaxation times can be used to estimate the microwave B1 field experienced by the sample. Finally, we show how modelling the nuclear spin-lattice relaxation times of close and bulk nuclei while accounting for PA concentration allows for a prediction of DNP enhancement factors and hyperpolarization build-up times.

9.
J Am Chem Soc ; 140(35): 11013-11019, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30095255

RESUMO

We introduce a new family of highly efficient polarizing agents for dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) applications, composed of asymmetric bis-nitroxides, in which a piperidine-based radical and a pyrrolinoxyl or a proxyl radical are linked together. The design of the AsymPol family was guided by the use of advanced simulations that allow computation of the impact of the radical structure on DNP efficiency. These simulations suggested the use of a relatively short linker with the intention to generate a sizable intramolecular electron dipolar coupling/ J-exchange interaction, while avoiding parallel nitroxide orientations. The characteristics of AsymPol were further tuned, for instance with the addition of a conjugated carbon-carbon double bond in the 5-membered ring to improve the rigidity and provide a favorable relative orientation, the replacement of methyls by spirocyclohexanolyl groups to slow the electron spin relaxation, and the introduction of phosphate groups to yield highly water-soluble dopants. An in-depth experimental and theoretical study for two members of the family, AsymPol and AsymPolPOK, is presented here. We report substantial sensitivity gains at both 9.4 and 18.8 T. The robust efficiency of this new family is further demonstrated through high-resolution surface characterization of an important industrial catalyst using fast sample spinning at 18.8 T. This work highlights a new direction for polarizing agent design and the critical importance of computations in this process.


Assuntos
Desenho Assistido por Computador , Compostos Orgânicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Orgânicos/síntese química
10.
J Am Chem Soc ; 140(22): 6758-6762, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29727182

RESUMO

Conjugated polymers are anisotropic in shape and with regard to electronic properties. Little is known as to how electronic anisotropy impacts the underlying characteristics of the electron spin, such as the coupling to orbital magnetic moments. Using multifrequency electrically detected magnetic resonance spectroscopy extending over 12 octaves in frequency, we explore the effect of spin-orbit coupling by examining the pronounced broadening of resonance spectra with increasing magnetic field. Whereas in three commonly used materials, the high-field spectra show asymmetric broadening, as would be expected from anisotropic g-strain effects associated with the molecular structure, in the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) the spectra broaden isotropically, providing a direct measure of the microscopic distribution in g-factors. This observation implies that effective charge-carrier g-tensors are isotropic, which likely originates from motional narrowing in this high-mobility material.

12.
Chemistry ; 23(34): 8315-8319, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28423212

RESUMO

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates µm amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of ϵon/off =4 superimposed on a nearly constant DNP enhancement of ϵon/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

13.
J Am Chem Soc ; 138(17): 5531-4, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27077402

RESUMO

The formally Co(IV) carbene Co(OR)2(═CPh2) is formed upon the reaction of diphenyldiazomethane with the cobalt bis(alkoxide) precursor Co(OR)2(THF)2. Structural, spectroscopic, and theoretical studies demonstrate that Co(OR)2(═CPh2) has significant high-valent Co(IV)═CPh2 character with non-negligible spin density on the carbene moiety.

14.
Inorg Chem ; 55(13): 6376-83, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26881994

RESUMO

Magnetic properties of the series of three linear, trimetallic chain compounds Cr2Cr(dpa)4Cl2, 1, Mo2Cr(dpa)4Cl2, 2, and W2Cr(dpa)4Cl2, 3 (dpa = 2,2'-dipyridylamido), have been studied using variable-temperature dc and ac magnetometry and high-frequency EPR spectroscopy. All three compounds possess an S = 2 electronic ground state arising from the terminal Cr(2+) ion, which exhibits slow magnetic relaxation under an applied magnetic field, as evidenced by ac magnetic susceptibility and magnetization measurements. The slow relaxation stems from the existence of an easy-axis magnetic anisotropy, which is bolstered by the axial symmetry of the compounds and has been quantified through rigorous high-frequency EPR measurements. The magnitude of D in these compounds increases when heavier ions are substituted into the trimetallic chain; thus D = -1.640, -2.187, and -3.617 cm(-1) for Cr2Cr(dpa)4Cl2, Mo2Cr(dpa)4Cl2, and W2Cr(dpa)4Cl2, respectively. Additionally, the D value measured for W2Cr(dpa)4Cl2 is the largest yet reported for a high-spin Cr(2+) system. While earlier studies have demonstrated that ligands containing heavy atoms can enhance magnetic anisotropy, this is the first report of this phenomenon using heavy metal atoms as "ligands".

15.
Anal Chem ; 87(4): 2306-13, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25647548

RESUMO

In the first use of high-field electron paramagnetic resonance (EPR) spectroscopy to characterize paramagnetic metal-organic and free radical species from tar balls and weathered crude oil samples from the Gulf of Mexico (collected after the Deepwater Horizon oil spill) and an asphalt volcano sample collected off the coast of Santa Barbara, CA, we are able to identify for the first time the various paramagnetic species present in the native state of these samples and understand their molecular structures and bonding. The two tar ball and one asphalt volcano samples contain three distinct paramagnetic species: (i) an organic free radical, (ii) a [VO](2+) containing porphyrin, and (iii) a Mn(2+) containing complex. The organic free radical was found to have a disc-shaped or flat structure, based on its axially symmetric spectrum. The characteristic spectral features of the vanadyl species closely resemble those of pure vanadyl porphyrin; hence, its nuclear framework around the vanadyl ion must be similar to that of vanadyl octaethyl porphyrin (VOOEP). The Mn(2+) ion, essentially undetected by low-field EPR, yields a high-field EPR spectrum with well-resolved hyperfine features devoid of zero-field splitting, characteristic of tetrahedral or octahedral Mn-O bonding. Although the lower-field EPR signals from the organic free radicals in fossil fuel samples have been investigated over the last 5 decades, the observed signal was featureless. In contrast, high-field EPR (up to 240 GHz) reveals that the species is a disc-shaped hydrocarbon molecule in which the unpaired electron is extensively delocalized. We envisage that the measured g-value components will serve as a sensitive basis for electronic structure calculations. High-field electron nuclear double resonance experiments should provide an accurate picture of the spin density distribution for both the vanadyl-porphyrin and Mn(2+) complexes, as well as the organic free radical, and will be the focus of follow-up studies.

16.
J Am Chem Soc ; 136(34): 11964-71, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25072104

RESUMO

Cyclic alkyl(amino) carbene stabilized two- and three-coordinate Fe(I) complexes, (cAAC)2FeCl (2) and [(cAAC)2Fe][B(C6F5)4] (3), respectively, were prepared and thoroughly studied by a bouquet of analytical techniques as well as theoretical calculations. Magnetic susceptibility and Mössbauer spectroscopy reveal the +1 oxidation state and S = 3/2 spin ground state of iron in both compounds. 2 and 3 show slow magnetic relaxation typical for single molecule magnets under an applied direct current magnetic field. The high-frequency EPR measurements confirm the S = 3/2 ground state with a large, positive zero-field splitting (∼20.4 cm(-1)) and reveal easy plane anisotropy for compound 2. CASSCF/CASPT2/RASSI-SO ab initio calculations using the MOLCAS program package support the experimental results.

17.
Inorg Chem ; 53(11): 5423-8, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24824101

RESUMO

A novel water-stable (t1/2 ∼ 6.8 days) mononuclear manganese(IV) complex of a hexacoordinating non-Schiff-base ligand (H4L) with N2O4-donor atoms has been synthesized and characterized crystallographically. High-frequency electron paramagnetic resonance experiments performed on a single crystal reveal a manganese(IV) ion with an S = 3/2 ground spin state that displays a large single-ion anisotropy, setting the record of mononuclear manganese(IV) complexes reported so far. In addition, spin-echo experiments reveal a spin-spin relaxation time T2 ∼ 500 ns.


Assuntos
Compostos de Manganês/química , Óxidos de Nitrogênio/química , Água , Cristalografia , Ligantes , Modelos Moleculares , Estrutura Molecular
18.
Inorg Chem ; 53(17): 9274-83, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25137357

RESUMO

Two monochromium(III)-containing heteropolytungstates, [Cr(III)(HP(V)W7O28)2](13-) (1a) and [Cr(III)(HAs(V)W7O28)2](13-) (2a), were prepared via simple, one-pot reactions in aqueous, basic medium, by reaction of the composing elements, and then isolated as hydrated sodium salts, Na13[Cr(III)(HP(V)W7O28)2]·47H2O (1) and Na13[Cr(III)(HAs(V)W7O28)2]·52H2O (2). Polyanions 1a and 2a comprise an octahedrally coordinated Cr(III) ion, sandwiched by two {PW7} or {AsW7} units. Both compounds 1 and 2 were fully characterized in the solid state by single-crystal XRD, IR spectroscopy, thermogravimetric and elemental analyses, magnetic susceptibility, and EPR measurements. Magnetic studies on 1 and 2 demonstrated that both compounds exhibit appreciable deviation from typical paramagnetic behavior, and have a ground state S = 3/2, as expected for a Cr(III) ion, but with an exceptionally large zero-field uniaxial anisotropy parameter (D). EPR measurements on powder and single-crystal samples of 1 and 2 using 9.5, 34.5, and 239.2 GHz frequencies and over 4-295 K temperature fully support the magnetization results and show that D = +2.4 cm(-1), the largest and sign-assigned D-value so far reported for an octahedral Cr(III)-containing, molecular compound. Ligand field analysis of results from CASSCF and NEVPT2-correlated electronic structure calculations on Cr(OH)6(3-) model complexes allowed to unravel the crucial role of the second coordination sphere of Cr(III) for the unusually large magnetic anisotropy reflected by the experimental value of D. The newly developed theoretical modeling, combined with the synthetic procedure for producing such unusual magnetic molecules in a well-defined and essentially magnetically isolated environment, appears to be a versatile new research area.

19.
Nat Commun ; 15(1): 3010, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589348

RESUMO

Single-ion anisotropy is vital for the observation of Single-Molecule Magnet (SMM) properties (i.e., a slow dynamics of the magnetization) in lanthanide-based systems. In the case of europium, the occurrence of this phenomenon has been inhibited by the spin and orbital quantum numbers that give way to J = 0 in the trivalent state and the half-filled population of the 4f orbitals in the divalent state. Herein, by optimizing the local crystal field of a quasi-linear bis(silylamido) EuII complex, the [EuII(N{SiMePh2}2)2] SMM is described, providing an example of a europium complex exhibiting slow relaxation of its magnetization. This behavior is dominated by a thermally activated (Orbach-like) mechanism, with an effective energy barrier of approximately 8 K, determined by bulk magnetometry and electron paramagnetic resonance. Ab initio calculations confirm second-order spin-orbit coupling effects lead to non-negligible axial magnetic anisotropy, splitting the ground state multiplet into four Kramers doublets, thereby allowing for the observation of an Orbach-like relaxation at low temperatures.

20.
Phys Chem Chem Phys ; 15(24): 9800-7, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23676994

RESUMO

We have performed temperature-dependent electron spin resonance (ESR) measurements of the stable free radical trityl OX063, an efficient polarizing agent for dissolution dynamic nuclear polarization (DNP), at the optimum DNP concentration (15 mM). We have found that (i) when compared to the W-band electron spin-lattice relaxation rate T1e(-1) of other free radicals used in DNP at the same concentration, trityl OX063 has slower T1e(-1) than BDPA and 4-oxo-TEMPO. At T > 20 K, the T1e(-1)vs. T data of trityl OX063 appears to follow a power law dependence close to the Raman process prediction whereas at T < 10 K, electronic relaxation slows and approaches the direct process behaviour. (ii) Gd(3+) doping, a factor known to enhance DNP, of trityl OX063 samples measured at W-band resulted in monotonic increases of T1e(-1) especially at temperatures below 20-40 K while the ESR lineshapes remained essentially unchanged. (iii) The high frequency ESR spectrum can be fitted with an axial g-tensor with a slight g-anisotropy: g(x) = g(y) = 2.00319(3) and g(z) = 2.00258(3). Although the ESR linewidth D monotonically increases with field, the temperature-dependent T1e(-1) is almost unchanged as the ESR frequency is increased from 9.5 GHz to 95 GHz, but becomes faster at 240 GHz and 336 GHz. The ESR properties of trityl OX063 reported here may provide insights into the efficiency of DNP of low-γ nuclei performed at various magnetic fields, from 0.35 T to 12 T.


Assuntos
Radicais Livres/química , Compostos de Sulfidrila/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Gadolínio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA