RESUMO
RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.
Assuntos
Fibroblastos , Estudos de Associação Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína Smad3 , Humanos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Masculino , Feminino , Fibroblastos/metabolismo , Adulto , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Diferenciação Celular/genética , Linhagem Celular , Miócitos de Músculo Liso/metabolismo , Estudos Retrospectivos , Fenótipo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , MutaçãoRESUMO
For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.
Assuntos
Perfilação da Expressão Gênica , Transtornos do Neurodesenvolvimento , Humanos , RNA-Seq , Cicloeximida , Análise de Sequência de RNA/métodos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genéticaRESUMO
We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Proteínas de Ciclo Celular/genéticaRESUMO
RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein. Eight of these variants occurred de novo, and one was inherited. Affected individuals demonstrated a variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. Paired-end RNA sequencing on blood lymphocytes of SCAF4-deficient individuals revealed a broad deregulation of more than 9,000 genes and significant differential splicing of more than 2,900 genes, indicating an important role of SCAF4 in mRNA processing. Knockdown of the SCAF4 ortholog CG4266 in the model organism Drosophila melanogaster resulted in impaired locomotor function, learning, and short-term memory. Furthermore, we observed an increased number of active zones in larval neuromuscular junctions, representing large glutamatergic synapses. These observations indicate a role of CG4266 in nervous system development and function and support the implication of SCAF4 in neurodevelopmental phenotypes. In summary, our data show that heterozygous, likely gene-disrupting variants in SCAF4 are causative for a variable neurodevelopmental disorder associated with impaired mRNA processing.
Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Fatores de Processamento de Serina-Arginina/genética , Animais , Criança , Drosophila melanogaster/genética , Feminino , Técnicas de Silenciamento de Genes , Variação Genética/genética , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Locomoção/genética , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Convulsões/fisiopatologia , Sequenciamento do ExomaRESUMO
To optimize care for children with Marfan syndrome (MFS) in the Netherlands, Dutch MFS growth charts were constructed. Additionally, we aimed to investigate the effect of FBN1 variant type (haploinsufficiency [HI]/dominant negative [DN]) on growth, and compare MFS-related height increase across populations. Height and weight data of individuals with MFS aged 0-21 years were retrospectively collected. Generalized Additive Models for Location, Scale and Shape (GAMLSS) was used for growth chart modeling. To investigate genotype-phenotype relationships, FBN1 variant type was included as an independent variable in height-for-age and BMI-for-age models. MFS-related height increase was compared with that of previous MFS growth studies from the United States, Korea, and France. Height and weight data of 389 individuals with MFS were included (210 males). Height-for-age, BMI-for-age, and weight-for-height charts reflected the tall and slender MFS habitus throughout childhood. Mean increase in height of individuals with MFS compared with the general Dutch population was significantly lower than in the other three MFS populations compared to their reference populations. FBN1-HI variants were associated with taller height in both sexes, and decreased BMI in females (p-values <0.05). This Dutch MFS growth study broadens the notion that genetic background and MFS variant type (HI/DN) influence tall and slender stature in MFS.
Assuntos
Síndrome de Marfan , Masculino , Feminino , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/epidemiologia , Síndrome de Marfan/genética , Gráficos de Crescimento , Estudos Retrospectivos , Países Baixos/epidemiologia , Mutação , Genótipo , Fenótipo , Fibrilina-1/genéticaRESUMO
BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Criança , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Convulsões/epidemiologia , Convulsões/genética , Síndrome , Sequenciamento do ExomaRESUMO
Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.
Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Mutação , Splicing de RNA/genética , DNA , Fibroblastos/patologia , Neurofibromina 1/genéticaRESUMO
The RNA polymerase II complex (pol II) is responsible for transcription of all â¼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Assuntos
RNA Polimerases Dirigidas por DNA/genética , Hipotonia Muscular/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Células HeLa , Heterozigoto , Humanos , Masculino , Hipotonia Muscular/enzimologia , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
PURPOSE: Heterozygous pathogenic/likely pathogenic (P/LP) variants in the ACTA2 gene confer a high risk for thoracic aortic aneurysms and aortic dissections. This retrospective multicenter study elucidates the clinical outcome of ACTA2-related vasculopathies. METHODS: Index patients and relatives with a P/LP variant in ACTA2 were included. Data were collected through retrospective review of medical records using a standardized questionnaire. RESULTS: A total of 49 individuals from 28 families participated in our study. In total, 20 different ACTA2 variants were detected. Aortic events occurred in 65% of the cases (78.6% index patients and 47.6% relatives). Male sex and hypertension emerged as significantly associated with aortic events. Of 20 individuals, 5 had an aortic diameter of <45 mm (1.77 inches) at the time of the type A dissection. Mean age at first aortic event was 49.0 ± 12.4 years. Severe surgical complications for type A and type B dissection occurred in 25% and 16.7% of the cases and in-hospital mortality rates were 9.5% and 0%, respectively. CONCLUSION: P/LP ACTA2 variants are associated with an increased risk for an aortic event and age-related penetrance, which emphasizes the importance of early recognition of the disease. Caregivers should be aware of the risk for aortic dissections, even in individuals with aortic diameters within the normal range.
Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Actinas/genética , Adulto , Dissecção Aórtica/genética , Aorta , Aneurisma da Aorta Torácica/epidemiologia , Aneurisma da Aorta Torácica/genética , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
Wiedemann-Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability (ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by pathogenic variants in the KMT2A gene. Clinical features can be inconclusive in mild and unusual WDSTS presentations with variable ID (mild to severe), facies (typical or not) and other associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Interpretation and classification of rare KMT2A variants can be challenging. A genome-wide DNA methylation episignature for KMT2A-related syndrome could allow functional classification of variants and provide insights into the pathophysiology of WDSTS. Therefore, we assessed genome-wide DNA methylation profiles in a cohort of 60 patients with clinical diagnosis for WDSTS or Kabuki and identified a unique highly sensitive and specific DNA methylation episignature as a molecular biomarker of WDSTS. WDSTS episignature enabled classification of variants of uncertain significance in the KMT2A gene as well as confirmation of diagnosis in patients with clinical presentation of WDSTS without known genetic variants. The changes in the methylation profile resulting from KMT2A mutations involve global reduction in methylation in various genes, including homeobox gene promoters. These findings provide novel insights into the molecular etiology of WDSTS and explain the broad phenotypic spectrum of the disease.
Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Múltiplas/diagnóstico , Anormalidades Craniofaciais , DNA , Metilação de DNA , Fácies , Transtornos do Crescimento , Humanos , Hipertricose , Deficiência Intelectual/patologia , Fenótipo , SíndromeRESUMO
Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.
Assuntos
DNA Helicases/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Domínio Catalítico , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Genes Dominantes , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Adulto JovemRESUMO
INTRODUCTION: The aim of this retrospective cohort study was to determine the potential diagnostic yield of prenatal whole exome sequencing in fetuses with structural anomalies on expert ultrasound scans and normal chromosomal microarray results. MATERIAL AND METHODS: In the period 2013-2016, 391 pregnant women with fetal ultrasound anomalies who received normal chromosomal microarray results, were referred for additional genetic counseling and opted for additional molecular testing pre- and/or postnatally. Most of the couples received only a targeted molecular test and in 159 cases (40.7%) whole exome sequencing (broad gene panels or open exome) was performed. The results of these molecular tests were evaluated retrospectively, regardless of the time of the genetic diagnosis (prenatal or postnatal). RESULTS: In 76 of 391 fetuses (19.4%, 95% CI 15.8%-23.6%) molecular testing provided a genetic diagnosis with identification of (likely) pathogenic variants. In the majority of cases (91.1%, 73/76) the (likely) pathogenic variant would be detected by prenatal whole exome sequencing analysis. CONCLUSIONS: Our retrospective cohort study shows that prenatal whole exome sequencing, if offered by a clinical geneticist, in addition to chromosomal microarray, would notably increase the diagnostic yield in fetuses with ultrasound anomalies and would allow early diagnosis of a genetic disorder irrespective of the (incomplete) fetal phenotype.
Assuntos
Anormalidades Múltiplas/diagnóstico , Transtornos Cromossômicos/diagnóstico , Sequenciamento do Exoma/métodos , Doenças Fetais/diagnóstico , Testes Genéticos/métodos , Diagnóstico Pré-Natal/métodos , Anormalidades Múltiplas/genética , Adulto , Transtornos Cromossômicos/genética , Feminino , Doenças Fetais/genética , Humanos , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal/métodosRESUMO
Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-ß gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.
Assuntos
Doenças da Aorta/genética , Genômica , Síndrome de Marfan/genética , Adulto , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/patologia , Respiração Celular , Feminino , Fibrilina-1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Síndrome de Marfan/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismoRESUMO
INTRODUCTION: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. METHODS AND RESULTS: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, Pâ¯=â¯1.6×10-5; U.S. cohort, Pâ¯=â¯2.2×10-13). CONCLUSION: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.
Assuntos
Cardiomiopatias/genética , Heterozigoto , Mutação com Perda de Função , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Proteínas Quinases/genética , Anormalidades Múltiplas/genética , Adulto , Idade de Início , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 15/genética , Ecocardiografia , Eletrocardiografia , Humanos , Lactente , FenótipoRESUMO
Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare.
Assuntos
Proteínas ADAMTS/genética , Variação Genética/genética , Cardiopatias Congênitas/genética , Doenças das Valvas Cardíacas/genética , Aorta/anormalidades , Criança , Pré-Escolar , Feminino , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Valvas Cardíacas/anormalidades , Ventrículos do Coração/anormalidades , Humanos , Masculino , FenótipoRESUMO
Aneurysms-osteoarthritis syndrome (AOS) is characterized by arterial aneurysms and dissection in combination with early-onset osteoarthritis, which can impact quality of life. We describe the subjective quality of life and investigate anxiety and depression in 28 AOS patients aged 15-73 years. Three questionnaires were used: 36-Item Short Form Survey (SF-36), hospital anxiety and depression scale (HADS) and Rotterdam disease specific questionnaire. Results of the SF-36 and HADS were compared to a reference Dutch cohort and the SF-36 questionnaire also to patients with Marfan syndrome. Compared to the general population, AOS patients scored significantly lower on the following SF-36 domains: physical functioning, vitality, social functioning, bodily pain, and general health. Physical functioning was also lower than in Marfan patients. Patients with AOS scored higher on the HADS depression scale, while anxiety did not show a significant difference compared to the general population. No difference in SF-36 and HADS domain scores were found between patient with and without orthopaedic symptoms and patients with or without previous aortic surgery. Additionally, we found that patients' worries for their future and heredity of their disease are important factors for anxiety, which should be addressed in clinical practice.
Assuntos
Ansiedade/psicologia , Aneurisma Aórtico/psicologia , Dissecção Aórtica/psicologia , Depressão/psicologia , Síndrome de Marfan/psicologia , Osteoartrite/psicologia , Dor/psicologia , Adolescente , Adulto , Idoso , Dissecção Aórtica/genética , Dissecção Aórtica/fisiopatologia , Ansiedade/genética , Ansiedade/fisiopatologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/fisiopatologia , Estudos de Casos e Controles , Depressão/genética , Depressão/fisiopatologia , Feminino , Expressão Gênica , Heterozigoto , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Marfan/fisiopatologia , Pessoa de Meia-Idade , Mutação , Osteoartrite/genética , Osteoartrite/fisiopatologia , Dor/genética , Dor/fisiopatologia , Qualidade de Vida/psicologia , Proteína Smad3/genética , Inquéritos e Questionários , SíndromeRESUMO
The Loeys-Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-ß (TGF-ß) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-ß signaling. More recently, TGF-ß ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-ß pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-ß signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.
Assuntos
Estudos de Associação Genética , Síndrome de Loeys-Dietz/genética , Mutação/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Animais , Modelos Animais de Doenças , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Camundongos , Transdução de Sinais/genéticaRESUMO
Correction to: Journal of Human Genetics (2016) 61, 229-33 https://doi.org/10.1038/jhg.2015.134 ; published online 26 November 2015.
RESUMO
PURPOSE: We aimed to determine the prevalence and phenotypic spectrum of NOTCH1 mutations in left-sided congenital heart disease (LS-CHD). LS-CHD includes aortic valve stenosis, a bicuspid aortic valve, coarctation of the aorta, and hypoplastic left heart syndrome. METHODS: NOTCH1 was screened for mutations in 428 nonsyndromic probands with LS-CHD, and family histories were obtained for all. When a mutation was detected, relatives were also tested. RESULTS: In 148/428 patients (35%), LS-CHD was familial. Fourteen mutations (3%; 5 RNA splicing mutations, 8 truncating mutations, 1 whole-gene deletion) were detected, 11 in familial disease (11/148 (7%)) and 3 in sporadic disease (3/280 (1%)). Forty-nine additional mutation carriers were identified among the 14 families, of whom 12 (25%) were asymptomatic. Most of these mutation carriers had LS-CHD, but 9 (18%) had right-sided congenital heart disease (RS-CHD) or conotruncal heart disease (CTD). Thoracic aortic aneurysms (TAAs) occurred in 6 mutation carriers (probands included 6/63 (10%)). CONCLUSION: Pathogenic mutations in NOTCH1 were identified in 7% of familial LS-CHD and in 1% of sporadic LS-CHD. The penetrance is high; a cardiovascular malformation was found in 75% of NOTCH1 mutation carriers. The phenotypic spectrum includes LS-CHD, RS-CHD, CTD, and TAA. Testing NOTCH1 for an early diagnosis in LS-CHD/RS-CHD/CTD/TAA is warranted.Genet Med 18 9, 914-923.