Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Med Res Methodol ; 21(1): 7, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407157

RESUMO

BACKGROUND: Although human longevity tends to cluster within families, genetic studies on longevity have had limited success in identifying longevity loci. One of the main causes of this limited success is the selection of participants. Studies generally include sporadically long-lived individuals, i.e. individuals with the longevity phenotype but without a genetic predisposition for longevity. The inclusion of these individuals causes phenotype heterogeneity which results in power reduction and bias. A way to avoid sporadically long-lived individuals and reduce sample heterogeneity is to include family history of longevity as selection criterion using a longevity family score. A main challenge when developing family scores are the large differences in family size, because of real differences in sibship sizes or because of missing data. METHODS: We discussed the statistical properties of two existing longevity family scores: the Family Longevity Selection Score (FLoSS) and the Longevity Relatives Count (LRC) score and we evaluated their performance dealing with differential family size. We proposed a new longevity family score, the mLRC score, an extension of the LRC based on random effects modeling, which is robust for family size and missing values. The performance of the new mLRC as selection tool was evaluated in an intensive simulation study and illustrated in a large real dataset, the Historical Sample of the Netherlands (HSN). RESULTS: Empirical scores such as the FLOSS and LRC cannot properly deal with differential family size and missing data. Our simulation study showed that mLRC is not affected by family size and provides more accurate selections of long-lived families. The analysis of 1105 sibships of the Historical Sample of the Netherlands showed that the selection of long-lived individuals based on the mLRC score predicts excess survival in the validation set better than the selection based on the LRC score . CONCLUSIONS: Model-based score systems such as the mLRC score help to reduce heterogeneity in the selection of long-lived families. The power of future studies into the genetics of longevity can likely be improved and their bias reduced, by selecting long-lived cases using the mLRC.


Assuntos
Características da Família , Longevidade , Viés , Simulação por Computador , Humanos , Longevidade/genética , Países Baixos
2.
Popul Stud (Camb) ; 75(1): 91-110, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32056500

RESUMO

It remains unknown how different types of sources affect the reconstruction of life courses and families in large-scale databases increasingly common in demographic research. Here, we compare family and life-course reconstructions for 495 individuals simultaneously present in two well-known Dutch data sets: LINKS, based on the Zeeland province's full-population vital event registration data (passive registration), and the Historical Sample of the Netherlands (HSN), based on a national sample of birth certificates, with follow-up of individuals in population registers (active registration). We compare indicators of fertility, marriage, mortality, and occupational status, and conclude that reconstructions in the HSN and LINKS reflect each other well: LINKS provides more complete information on siblings and parents, whereas the HSN provides more complete life-course information. We conclude that life-course and family reconstructions based on linked passive registration of individuals constitute a reliable alternative to reconstructions based on active registration, if case selection is carefully considered.


Assuntos
Fertilidade , Casamento , Coeficiente de Natalidade , Humanos , Países Baixos , Dinâmica Populacional , Sistema de Registros
3.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt A): 2742-2751, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28951210

RESUMO

Human ageing is an extremely personal process leading across the life course of individuals to large population heterogeneity in the decline of functional capacity, health and lifespan. The extremes of this process are witnessed by the healthy vital 100-year-olds on one end and the 60-year-olds suffering from multiple morbid conditions on the other end of the spectrum. Molecular studies into the basis of this heterogeneity have focused on a range of endpoints and methodological approaches. The phenotype definitions most prominently investigated in these studies are either lifespan-related or biomarker based indices of the biological ageing rate of individuals and their tissues. Unlike for many complex, age-related diseases, consensus on the ultimate set of multi-biomarker ageing or lifespan-related phenotypes for genetic and genomic studies has not been reached yet. Comparable to animal models, hallmarks of age-related disease risk, healthy ageing and longevity include immune and metabolic pathways. Potentially novel genomic regions and pathways have been identified among many (epi)genomic studies into chronological age and studies into human lifespan regulation, with APOE and FOXO3A representing yet the most robust loci. Functional analysis of a handful of genes in cell-based and animal models is ongoing. The way forward in human ageing and longevity studies seems through improvements in the interpretation of the biology of the genome, in application of computational and systems biology, integration with animal models and by harmonization of repeated phenotypic and omics measures in longitudinal and intervention studies. This article is part of a Special Issue entitled: Model Systems of Aging - edited by "Houtkooper Riekelt".


Assuntos
Envelhecimento/genética , Biomarcadores , Genômica , Longevidade/genética , Fenótipo , Animais , Apolipoproteínas E/genética , Proteína Forkhead Box O3/genética , Heterogeneidade Genética , Loci Gênicos , Humanos , Metabolômica , Modelos Animais , Modelos Biológicos , Pesquisa
4.
Nat Commun ; 14(1): 4518, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500622

RESUMO

Globally, the lifespan of populations increases but the healthspan is lagging behind. Previous research showed that survival into extreme ages (longevity) clusters in families as illustrated by the increasing lifespan of study participants with each additional long-lived family member. Here we investigate whether the healthspan in such families follows a similar quantitative pattern using three-generational data from two databases, LLS (Netherlands), and SEDD (Sweden). We study healthspan in 2143 families containing index persons with 26 follow-up years and two ancestral generations, comprising 17,539 persons. Our results provide strong evidence that an increasing number of long-lived ancestors associates with up to a decade of healthspan extension. Further evidence indicates that members of long-lived families have a delayed onset of medication use, multimorbidity and, in mid-life, healthier metabolomic profiles than their partners. We conclude that both lifespan and healthspan are quantitatively linked to ancestral longevity, making family data invaluable to identify protective mechanisms of multimorbidity.


Assuntos
Nível de Saúde , Longevidade , Humanos , Longevidade/genética , Família , Países Baixos , Suécia , Envelhecimento/genética
5.
Aging Cell ; 19(6): e13139, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32352215

RESUMO

Loci associated with longevity are likely to harbor genes coding for key players of molecular pathways involved in a lifelong decreased mortality and decreased/compressed morbidity. However, identifying such loci is challenging. One of the most plausible reasons is the uncertainty in defining long-lived cases with the heritable longevity trait among long-living phenocopies. To avoid phenocopies, family selection scores have been constructed, but these have not yet been adopted as state of the art in longevity research. Here, we aim to identify individuals with the heritable longevity trait by using current insights and a novel family score based on these insights. We use a unique dataset connecting living study participants to their deceased ancestors covering 37,825 persons from 1,326 five-generational families, living between 1788 and 2019. Our main finding suggests that longevity is transmitted for at least two subsequent generations only when at least 20% of all relatives are long-lived. This proves the importance of family data to avoid phenocopies in genetic studies.


Assuntos
Envelhecimento/genética , Predisposição Genética para Doença/epidemiologia , Testes Genéticos/métodos , Longevidade/genética , Feminino , Humanos , Masculino
6.
Nat Commun ; 10(1): 35, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617297

RESUMO

Survival to extreme ages clusters within families. However, identifying genetic loci conferring longevity and low morbidity in such longevous families is challenging. There is debate concerning the survival percentile that best isolates the genetic component in longevity. Here, we use three-generational mortality data from two large datasets, UPDB (US) and LINKS (Netherlands). We study 20,360 unselected families containing index persons, their parents, siblings, spouses, and children, comprising 314,819 individuals. Our analyses provide strong evidence that longevity is transmitted as a quantitative genetic trait among survivors up to the top 10% of their birth cohort. We subsequently show a survival advantage, mounting to 31%, for individuals with top 10% surviving first and second-degree relatives in both databases and across generations, even in the presence of non-longevous parents. To guide future genetic studies, we suggest to base case selection on top 10% survivors of their birth cohort with equally long-lived family members.


Assuntos
Longevidade/genética , Característica Quantitativa Herdável , Estudos de Coortes , Feminino , Humanos , Masculino , Linhagem
7.
Ageing Res Rev ; 38: 28-39, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28689042

RESUMO

Research into the genetic component of human longevity can provide important insights in mechanisms that may protect against age-related diseases and multi-morbidity. Thus far only a limited number of robust longevity loci have been detected in either candidate or genome wide association studies. One of the issues in these genetic studies is the definition of the trait being either lifespan, including any age at death or longevity, i.e. survival above a diverse series of thresholds. Likewise heritability and segregation research have conflated lifespan with longevity. The heritability of lifespan estimated across most studies has been rather low. Environmental factors have not been sufficiently investigated and the total amount of genetic variance contributing to longevity has not been estimated in sufficiently well-defined and powered studies. Up to now, genetic longevity studies lack the required insights into the nature and size of the genetic component and the optimal strategies for meta-analysis and subject selection for Next Generation Sequencing efforts. Historical demographic data containing deep genealogical information may help in estimating the best definition and heritability for longevity, its transmission patterns in multi-generational datasets and may allow relevant additive and modifying environmental factors such as socio-economic status, geographical background, exposure to environmental effects, birth order, and number of children to be included. In this light historical demographic data may be very useful for identifying lineages in human populations that are worth investigating further by geneticists.


Assuntos
Demografia , Expectativa de Vida , Longevidade/genética , Interação Gene-Ambiente , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança , Fenótipo
8.
Aging (Albany NY) ; 12(22): 22354-22355, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33253123
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA