RESUMO
Renal proximal tubular reabsorption of proteins and polypeptides is tightly regulated by a concerted action of the multi-ligand receptors with subsequent processing from the clathrin-coated pits to early/recycling and late endosomes and towards lysosomes. We performed whole exome-sequencing in a male patient from a consanguineous family, who presented with low- and intermediate molecular weight proteinuria, nephrocalcinosis and oligospermia. We identified a new potential player in tubular endocytosis, coiled-coil domain containing 158 (CCDC158). The variant in CCDC158 segregated with the phenotype and was also detected in a female sibling with a similar clinical kidney phenotype. We demonstrated the expression of this protein in kidney tubules and modeled its structure in silico. We hypothesized that the protein played a role in the tubular endocytosis by interacting with other endocytosis regulators, and used mass spectrometry to identify potential interactors. The role of CCDC158 in receptor-mediated endocytosis was further confirmed by transferrin and GST-RAP trafficking analyses in patient-derived proximal tubular epithelial cells. Finally, as CCDC158 is known to be expressed in the testis, the presence of oligospermia in the male sibling further substantiated the pathogenic role of the detected missense variant in the observed phenotype. In this study, we provide data that demonstrate the potential role of CCDC158 in receptor-mediated endocytosis, most likely by interaction with other endocytosis-related proteins that strongly correlate with the proximal tubular dysfunction phenotype as observed in the patients. However, more studies are needed to fully unravel the molecular mechanism(s) in which CCDC158 is involved.
RESUMO
Cystinosis is an autosomal recessive lysosomal storage disorder, caused by mutations in the CTNS gene, resulting in an absent or altered cystinosin (CTNS) protein. Cystinosin exports cystine out of the lysosome, with a malfunction resulting in cystine accumulation and a defect in other cystinosin-mediated pathways. Cystinosis is a systemic disease, but the kidneys are the first and most severely affected organs. In the kidney, the disease initially manifests as a generalized dysfunction in the proximal tubules (also called renal Fanconi syndrome). MFSD12 is a lysosomal cysteine importer that directly affects the cystine levels in melanoma cells, HEK293T cells, and cystinosis patient-derived fibroblasts. In this study, we aimed to evaluate MFSD12 mRNA levels in cystinosis patient-derived proximal tubular epithelial cells (ciPTECs) and to study the effect of MFSD12 knockout on cystine levels. We showed similar MFSD12 mRNA expression in patient-derived ciPTECs in comparison with the control cells. CRISPR MFSD12 knockout in a patient-derived ciPTEC (CTNSΔ57kb) resulted in significantly reduced cystine levels. Furthermore, we evaluated proximal tubular reabsorption after injection of mfsd12a translation-blocking morpholino (TB MO) in a ctns-/- zebrafish model. This resulted in decreased cystine levels but caused a concentration-dependent increase in embryo dysmorphism. Furthermore, the mfsd12a TB MO injection did not improve proximal tubular reabsorption or megalin expression. In conclusion, MFSD12 mRNA depletion reduced cystine levels in both tested models without improvement of the proximal tubular function in the ctns-/- zebrafish embryo. In addition, the apparent toxicity of higher mfsd12a TB MO concentrations on the zebrafish development warrants further evaluation.NEW & NOTEWORTHY In this study, we show that MFSD12 depletion with either CRISPR/Cas9-mediated gene editing or a translation-blocking morpholino significantly reduced cystine levels in cystinosis ciPTECs and ctns-/- zebrafish embryos, respectively. However, we observed no improvement in the proximal tubular reabsorption of dextran in the ctns-/- zebrafish embryos injected with mfsd12a translation-blocking morpholino. Furthermore, a negative effect of the mfsd12a morpholino on the zebrafish development warrants further investigation.
Assuntos
Cistina , Cistinose , Modelos Animais de Doenças , Túbulos Renais Proximais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Cistinose/metabolismo , Cistinose/genética , Cistinose/patologia , Humanos , Cistina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Células Epiteliais/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas CRISPR-CasRESUMO
Glomerular hyperfiltration and albuminuria are frequent kidney abnormalities in children with sickle cell anaemia (SCA). However, little is known about their persistence in African SCA children. This prospective study included 600 steady-state SCA children aged 2-18 years from the Democratic Republic of Congo. Participants were genotyped for apolipoprotein L1 (APOL1) risk variants (RVs) and haem oxygenase-1 (HMOX1) GT-dinucleotide repeats. Kidney abnormalities were defined as albuminuria, hyperfiltration or decreased estimated creatinine-based glomerular filtration rate (eGFRcr). At baseline, 247/600 (41.2%) participants presented with kidney abnormalities: 82/592 (13.8%) with albuminuria, 184/587 (31.3%) with hyperfiltration and 15/587 (2.6%) with decreased eGFRcr. After a median follow-up of 5 months, repeated testing was performed in 180/247 (72.9%) available participants. Persistent hyperfiltration and persistent albuminuria (PA) were present in 29.2% (38/130) and 39.7% (23/58) respectively. eGFR normalized in all participants with a baseline decreased eGFRcr. Haemoglobinuria (p = 0.017) and male gender (p = 0.047) were significantly associated with PA and persistent hyperfiltration respectively. APOL1 RVs (G1G1/G2G2/G1G2) were borderline associated with PA (p = 0.075), while HMOX1 long repeat was not associated with any persistent kidney abnormality. This study reveals that a single screening can overestimate the rate of kidney abnormalities in children with SCA and could lead to overtreatment.
Assuntos
Albuminúria , Anemia Falciforme , Apolipoproteína L1 , Taxa de Filtração Glomerular , Humanos , Albuminúria/etiologia , Criança , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/fisiopatologia , Masculino , Feminino , Adolescente , Pré-Escolar , Apolipoproteína L1/genética , Estudos Prospectivos , Heme Oxigenase-1/genética , República Democrática do Congo/epidemiologiaRESUMO
BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.
Assuntos
Complexo Cetoglutarato Desidrogenase , Doença de Leigh , Doença de Leigh/genética , Humanos , Masculino , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/deficiência , Proteínas Mitocondriais/genética , Pré-Escolar , LactenteRESUMO
BACKGROUND: The Schwartz equation is the most widely used serum creatinine (SCr)-based formula to estimate the glomerular filtration rate (GFR) in children of European descent, but whether this applies to African children is unclear. METHODS: In a cross-sectional study, 513 apparently healthy African children aged 6 to 16 years were randomly recruited in school area of Kinshasa, the Democratic Republic of Congo (DRC). SCr was measured using calibrated enzymatic method. SCr was normalized using Q-values designed for European descent children, due to the absence of Q-values for African children. Commonly used eGFR equations were applied in this population. RESULTS: Normalization of SCr using Q-values for European descent children was effective in this cohort. The majority of African children (93.4%) have normalized SCr (SCr/Q) values within the reference interval (0.67-1.33) of children of European descent. The bedside-Schwartz equation was associated with significant age and sex dependency. However, the FAS-Age formula showed no sex and age dependency. The new CKiDU25 equation did not show a significant sex dependency. The recently introduced EKFC and LMR18 equations also showed no age and sex dependency, although the distribution of eGFR-values was not symmetrical. On the other hand, the FAS-Height and the Schwartz-Lyon equations showed significant sex dependency but no age dependency. CONCLUSIONS: The reference interval for SCr designed for European descent children can be applied to African children. Of all the equations studied, FAS-Age performed best and is most suitable because no height measurements are required. Establishment of specific Q-values for the widespread Jaffe-measured creatinine in Africa can further broaden applicability.
Assuntos
População Negra , Creatinina , Taxa de Filtração Glomerular , Humanos , Criança , Masculino , Feminino , Adolescente , Creatinina/sangue , Estudos Transversais , República Democrática do Congo , População Negra/estatística & dados numéricos , Valores de Referência , Fatores Etários , Fatores SexuaisRESUMO
Thrombotic microangiopathy (TMA) in association with RNA exosome encoding mutations has only recently been recognized. Here, we present an infant (female) with an EXOSC5 mutation (c.230_232del p.Glu77del) associated with the clinical phenotype known as CABAC syndrome (cerebellar ataxia, brain abnormalities, and cardiac conduction defects), including pontocerebellar hypoplasia, who developed renal TMA. At the age of four months, she presented with signs of septic illness, after which she developed TMA. A stool culture showed rotavirus as a potential trigger. The patient received eculizumab once, alongside supportive treatment, while awaiting diagnostic analysis of TMA, including genetic complement analysis, all of which were negative. Eculizumab was withdrawn and the patient's TMA recovered quickly. A review of the literature identified an additional four patients (age < 1 year) who developed TMA after a viral trigger in the presence of mutations in EXOSC3. The recurrence of TMA in one of these patients with an EXOSC3 mutation while on eculizumab treatment underscores the apparent lack of responsiveness to C5 inhibition. In conclusion, mutations in genes influencing the RNA exosome, like EXOSC3 and EXOSC5, characterized by neurodevelopment and neurodegenerative disorders could potentially lead to TMA in the absence of complement dysregulation. Hence, these patients were likely non-responsive to eculizumab.
Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Mutação , Microangiopatias Trombóticas , Humanos , Microangiopatias Trombóticas/genética , Microangiopatias Trombóticas/etiologia , Feminino , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Lactente , Proteínas de Ligação a RNA/genética , Exossomos/genética , Exossomos/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêuticoRESUMO
BACKGROUND: Eculizumab is a lifesaving yet expensive drug for atypical haemolytic uraemic syndrome (aHUS). Current guidelines advise a fixed-dosing schedule, which can be suboptimal and inflexible in the individual patient. METHODS: We evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) [classical pathway (CP) activity levels] of eculizumab in 48 patients, consisting of 849 time-concentration data and 569 CP activity levels. PK-PD modelling was performed with non-linear mixed-effects modelling. The final model was used to develop improved dosing strategies. RESULTS: A PK model with parallel linear and non-linear elimination rates best described the data with the parameter estimates clearance 0.163 L/day, volume of distribution 6.42 L, maximal rate 29.6 mg/day and concentration for 50% of maximum rate 37.9 mg/L. The PK-PD relation between eculizumab concentration and CP activity was described using an inhibitory Emax model with the parameter estimates baseline 101%, maximal inhibitory effect 95.9%, concentration for 50% inhibition 22.0 mg/L and Hill coefficient 5.42. A weight-based loading dose, followed by PK-guided dosing was found to improve treatment. On day 7, we predict 99.95% of the patients to reach the efficacy target (CP activity <10%), compared with 94.75% with standard dosing. Comparable efficacy was predicted during the maintenance phase, while the dosing interval could be prolonged in â¼33% of the population by means of individualized dosing. With a fixed-dose 4-week dosing interval to allow for holidays, treatment costs will increase by 7.1% and we predict 91% of the patients will reach the efficacy target. CONCLUSIONS: A patient-friendly individualized dosing strategy of eculizumab has the potential to improve treatment response at reduced costs.
Assuntos
Síndrome Hemolítico-Urêmica Atípica , Humanos , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Análise Custo-Benefício , Anticorpos Monoclonais Humanizados/uso terapêuticoRESUMO
The complement system is an important part of innate immunity. Complement activation leads to formation of convertase enzymes, switch of their specificity from C3 to C5 cleavage, and generation of lytic membrane attack complexes (C5b-9) on surfaces of pathogens. Most C5 cleavage occurs via the complement alternative pathway (AP). The regulator properdin promotes generation and stabilization of AP convertases. However, its role in C5 activation is not yet understood. In this work, we showed that serum properdin is essential for LPS- and zymosan-induced C5b-9 generation and C5b-9-mediated lysis of rabbit erythrocytes. Furthermore, we demonstrated its essential role in C5 cleavage by AP convertases. To this end, we developed a hemolytic assay in which AP convertases were generated on rabbit erythrocytes by using properdin-depleted serum in the presence of C5 inhibitor (step 1), followed by washing and addition of purified C5-C9 components to allow C5b-9 formation (step 2). In this assay, addition of purified properdin to properdin-depleted serum during convertase formation (step 1) was required to restore C5 cleavage and C5b-9-mediated hemolysis. Importantly, C5 convertase activity was also fully restored when properdin was added together with C5b-9 components (step 2), thus after convertase formation. Moreover, with C3-depleted serum, not capable of forming new convertases but containing properdin, in step 2 of the assay, again full C5b-9 formation was observed and blocked by addition of properdin inhibitor Salp20. Thus, properdin is essential for the convertase specificity switch toward C5, and this function is independent of properdin's role in new convertase formation.
Assuntos
Ativação do Complemento/fisiologia , Convertases de Complemento C3-C5/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Via Alternativa do Complemento/fisiologia , Properdina/metabolismo , Animais , CoelhosRESUMO
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Assuntos
Nefropatias , Rim , Humanos , Glomérulos Renais , Nefropatias/tratamento farmacológico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA MensageiroRESUMO
HIV infection remains one of the leading causes of morbidity and mortality worldwide, especially in children living in resource-limited settings. Although the World Health Organization (WHO) recently recommended antiretroviral therapy (ART) initiation upon diagnosis regardless of the number of CD4, ART access remains limited, especially in children living in sub-Saharan Africa (SSA). HIV-infected children who do not receive appropriate ART are at increased risk of developing HIV-associated nephropathy (HIVAN). Although due to genetic susceptibility, SSA is recognized to be the epicenter of HIVAN, limited information is available regarding the burden of HIVAN in children living in Africa. The present review discusses the information available to date on the prevalence, pathogenesis, risk factors, diagnosis, and management of HIVAN in children, focusing on related challenges in a resource-limited setting.
Assuntos
Nefropatia Associada a AIDS , Infecções por HIV , Humanos , Criança , Nefropatia Associada a AIDS/diagnóstico , Nefropatia Associada a AIDS/epidemiologia , Nefropatia Associada a AIDS/etiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Região de Recursos Limitados , Fatores de Risco , África Subsaariana/epidemiologiaRESUMO
Glomerular hyperfiltration (GHF) is a phenomenon that can occur in various clinical conditions affecting the kidneys such as sickle cell disease, diabetes mellitus, autosomal dominant polycystic kidney disease, and solitary functioning kidney. Yet, the pathophysiological mechanisms vary from one disease to another and are not well understood. More so, it has been demonstrated that GHF may occur at the single-nephron in some clinical conditions while in others at the whole-kidney level. In this review, we explore the pathophysiological mechanisms of GHF in relation to various clinical conditions in the pediatric population. In addition, we discuss the role and mechanism of action of important factors such as gender, low birth weight, and race in the pathogenesis of GHF. Finally, in this current review, we further highlight the consequences of GHF in the progression of kidney disease.
Assuntos
Relevância Clínica , Rim Policístico Autossômico Dominante , Criança , Humanos , Taxa de Filtração Glomerular/fisiologia , Glomérulos Renais , Rim , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genéticaRESUMO
mRNA-based therapeutics have revolutionized the world of molecular therapy and have proven their potential in the vaccination campaigns for SARS-CoV2 and clinical trials for hereditary disorders. Preclinical studies have mainly focused on in vitro and rodent studies. However, research in rodents is costly and labour intensive, and requires ethical approval for all interventions. Zebrafish embryonic disease models are not always classified as laboratory animals and have been shown to be extremely valuable for high-throughput drug testing. Zebrafish larvae are characterized by their small size, optical transparency and high number of embryos, and are therefore also suited for the study of mRNA-based therapeutics. First, the one-cell stage injection of naked mRNA can be used to assess the effectivity of gene addition in vivo. Second, the intravascular injection in older larvae can be used to assess tissue targeting efficiency of (packaged) mRNA. In this review, we describe how zebrafish can be used as a steppingstone prior to testing mRNA in rodent models. We define the procedures that can be employed for both the one-cell stage and later-stage injections, as well as the appropriate procedures for post-injection follow-up.
Assuntos
COVID-19 , Peixe-Zebra , Animais , Peixe-Zebra/genética , RNA Mensageiro/genética , RNA Viral , SARS-CoV-2/genética , Embrião não MamíferoRESUMO
Cystinosis is an autosomal recessive lysosomal storage disease, caused by mutations in the CTNS gene, resulting in multi-organ cystine accumulation. Three forms of cystinosis are distinguished: infantile and juvenile nephropathic cystinosis affecting kidneys and other organs such as the eyes, endocrine system, muscles, and brain, and adult ocular cystinosis affecting only the eyes. Currently, elevated white blood cell (WBC) cystine content is the gold standard for the diagnosis of cystinosis. We present a patient with proteinuria at adolescent age and corneal cystine crystals, but only slightly elevated WBC cystine levels (1.31 ½ cystine/mg protein), precluding the diagnosis of nephropathic cystinosis. We demonstrate increased levels of cystine in skin fibroblasts and urine-derived kidney cells (proximal tubular epithelial cells and podocytes), that were higher than the values observed in the WBC and healthy control. CTNS gene analysis shows the presence of a homozygous missense mutation (c.590 A > G; p.Asn177Ser), previously described in the Arab population. Our observation underlines that low WBC cystine levels can be observed in patients with juvenile cystinosis, which may delay the diagnosis and timely administration of cysteamine. In such patients, the diagnosis can be confirmed by cystine measurement in slow-dividing cells and by molecular analysis of the CTNS gene.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Adulto , Adolescente , Humanos , Cistinose/diagnóstico , Cistinose/genética , Cistinose/metabolismo , Cistina/metabolismo , Cisteamina , Leucócitos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genéticaRESUMO
During development, nephron structures are derived from a SIX2+ stem cell population. After 36 weeks of gestation, these cells are exhausted, and no new nephrons are formed. We have previously described a non-invasive strategy to isolate and expand the native SIX2+ kidney stem cells from the urine of preterm neonates, named neonatal kidney stem/progenitor cells (nKSPC). Here, we investigated the safety and feasibility of administering nKSPC into human kidneys discarded for transplantation during normothermic machine perfusion (NMP) and evaluated the regenerative and immunomodulatory potential of nKSPC treatment. We found that nKSPC administration during NMP is safe and feasible. Interestingly, nKSPC induced the de novo expression of SIX2 in proximal tubular cells of the donor kidneys and upregulated regenerative markers such as SOX9 and VEGF. This is the first time that SIX2 re-expression is observed in adult human kidneys. Moreover, nKSPC administration significantly lowered levels of kidney injury biomarkers and reduced inflammatory cytokine levels via the tryptophan-IDO-kynurenine pathway. In conclusion, nKSPC is a novel cell type to be applied in kidney-targeted cell therapy, with the potential to induce an endogenous regenerative process and immunomodulation.
Assuntos
Proteínas de Homeodomínio , Rim , Recém-Nascido , Humanos , Rim/metabolismo , Néfrons , Células-Tronco/metabolismo , Perfusão , Proteínas do Tecido Nervoso/metabolismoRESUMO
Clinical and genetic factors have been reported as influencing the development of sickle cell nephropathy (SCN). However, such data remain limited in the paediatric population. In this cross-sectional study, we enrolled 361 sickle cell disease children from the Democratic Republic of Congo. Participants were genotyped for the beta (ß)-globin gene, apolipoprotein L1 (APOL1) risk variants, and haem oxygenase-1 (HMOX1) GT-dinucleotide repeats. As markers of kidney damage, albuminuria, hyperfiltration and decreased estimated glomerular filtration with creatinine (eGFRcr) were measured. An association of independent clinical and genetic factors with these markers of kidney damage were assessed via regression analysis. Genetic sequencing confirmed sickle cell anaemia in 326 participants. Albuminuria, hyperfiltration and decreased eGFRcr were present in 65 (20%), 52 (16%) and 18 (5·5%) patients, respectively. Regression analysis revealed frequent blood transfusions, indirect bilirubin and male gender as clinical predictors of SCN. APOL1 high-risk genotype (G1/G1, G2/G2 and G1/G2) was significantly associated with albuminuria (P = 0·04) and hyperfiltration (P = 0·001). HMOX1 GT-dinucleotide long repeats were significantly associated with lower eGFRcr. The study revealed a high burden of kidney damage among Congolese children and provided evidence of the possible role of APOL1 and HMOX1 in making children more susceptible to kidney complications.
Assuntos
Anemia Falciforme/complicações , Anemia Falciforme/epidemiologia , População Negra , Suscetibilidade a Doenças , Nefropatias/epidemiologia , Nefropatias/etiologia , Adolescente , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Apolipoproteína L1/genética , Criança , Pré-Escolar , Estudos Transversais , Índices de Eritrócitos , Feminino , Predisposição Genética para Doença , Variação Genética , Taxa de Filtração Glomerular , Heme Oxigenase-1/genética , Humanos , Nefropatias/diagnóstico , Testes de Função Renal , Masculino , Mutação , Globinas beta/metabolismoRESUMO
Congenital disorders of glycosylation type 1 (CDG-I) comprise a group of 27 genetic defects with heterogeneous multisystem phenotype, mostly presenting with nonspecific neurological symptoms. The biochemical hallmark of CDG-I is a partial absence of complete N-glycans on transferrin. However, recent findings of a diagnostic N-tetrasaccharide for ALG1-CDG and increased high-mannose N-glycans for a few other CDG suggested the potential of glycan structural analysis for CDG-I gene discovery. We analyzed the relative abundance of total plasma N-glycans by high resolution quadrupole time-of-flight mass spectrometry in a large cohort of 111 CDG-I patients with known (n = 75) or unsolved (n = 36) genetic cause. We designed single-molecule molecular inversion probes (smMIPs) for sequencing of CDG-I candidate genes on the basis of specific N-glycan signatures. Glycomics profiling in patients with known defects revealed novel features such as the N-tetrasaccharide in ALG2-CDG patients and a novel fucosylated N-pentasaccharide as specific glycomarker for ALG1-CDG. Moreover, group-specific high-mannose N-glycan signatures were found in ALG3-, ALG9-, ALG11-, ALG12-, RFT1-, SRD5A3-, DOLK-, DPM1-, DPM3-, MPDU1-, ALG13-CDG, and hereditary fructose intolerance. Further differential analysis revealed high-mannose profiles, characteristic for ALG12- and ALG9-CDG. Prediction of candidate genes by glycomics profiling in 36 patients with thus far unsolved CDG-I and subsequent smMIPs sequencing led to a yield of solved cases of 78% (28/36). Combined plasma glycomics profiling and targeted smMIPs sequencing of candidate genes is a powerful approach to identify causative mutations in CDG-I patient cohorts.
Assuntos
Defeitos Congênitos da Glicosilação , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Glicômica , Glicosilação , Humanos , Manose , Manosiltransferases/genética , N-Acetilglucosaminiltransferases , Oligossacarídeos , Polissacarídeos/genéticaRESUMO
The life expectancy of individuals with sickle cell disease has increased over the years, majorly due to an overall improvement in diagnosis and medical care. Nevertheless, this improved longevity has resulted in an increased prevalence of chronic complications such as sickle cell nephropathy (SCN), which poses a challenge to the medical care of the patient, shortening the lifespan of patients by 20-30 years. Clinical presentation of SCN is age-dependent, with kidney dysfunction slowly beginning to develop from childhood, progressing to chronic kidney disease and kidney failure during the third and fourth decades of life. This review explores the epidemiology, pathology, pathophysiology, clinical presentation, and management of SCN by focusing on the pediatric population. It also discusses the factors that can modify SCN susceptibility.
Assuntos
Anemia Falciforme , Insuficiência Renal Crônica , Doenças Vasculares , Anemia Falciforme/complicações , Anemia Falciforme/epidemiologia , Anemia Falciforme/terapia , Criança , Humanos , Prevalência , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologiaRESUMO
Parietal epithelial cells (PECs) are epithelial cells in the kidney, surrounding Bowman's space. When activated, PECs increase in cell volume, proliferate, migrate to the glomerular tuft and excrete extracellular matrix. Activated PECs are crucially involved in the formation of sclerotic lesions, seen in focal segmental glomerulosclerosis (FSGS). In FSGS, a number of glomeruli show segmental sclerotic lesions. Further disease progression will lead to increasing number of involved glomeruli and gradual destruction of the affected glomeruli. Although the involvement of PECs in FSGS has been acknowledged, little is known about the molecular processes driving PEC activation. To get more insights in this process, accurate in vivo and in vitro models are needed. Here, we describe the development and characterization of a novel conditionally immortalized human PEC (ciPEC) line. We demonstrated that ciPECs are differentiated when grown under growth-restrictive conditions and express important PEC-specific markers, while lacking podocyte and endothelial markers. In addition, ciPECs showed PEC-like morphology and responded to IL-1ß treatment. We therefore conclude that we have successfully generated a novel PEC line, which can be used for future studies on the role of PECs in FSGS.
Assuntos
Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/citologia , Humanos , Receptores de Hialuronatos/metabolismo , Rim/citologia , Podócitos/citologiaRESUMO
BACKGROUND: C3 glomerulopathy (C3G) is a rare kidney disorder characterized by predominant glomerular depositions of complement C3. C3G can be subdivided into dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). This study describes the long-term follow-up with extensive complement analysis of 29 Dutch children with C3G. METHODS: Twenty-nine C3G patients (19 DDD, 10 C3GN) diagnosed between 1992 and 2014 were included. Clinical and laboratory findings were collected at presentation and during follow-up. Specialized assays were used to detect rare variants in complement genes and measure complement-directed autoantibodies and biomarkers in blood. RESULTS: DDD patients presented with lower estimated glomerular filtration rate (eGFR). C3 nephritic factors (C3NeFs) were detected in 20 patients and remained detectable over time despite immunosuppressive treatment. At presentation, low serum C3 levels were detected in 84% of all patients. During follow-up, in about 50% of patients, all of them C3NeF-positive, C3 levels remained low. Linear mixed model analysis showed that C3GN patients had higher soluble C5b-9 (sC5b-9) and lower properdin levels compared to DDD patients. With a median follow-up of 52 months, an overall benign outcome was observed with only six patients with eGFR below 90 ml/min/1.73 m2 at last follow-up. CONCLUSIONS: We extensively described clinical and laboratory findings including complement features of an exclusively pediatric C3G cohort. Outcome was relatively benign, persistent low C3 correlated with C3NeF presence, and C3GN was associated with higher sC5b-9 and lower properdin levels. Prospective studies are needed to further elucidate the pathogenic mechanisms underlying C3G and guide personalized medicine with complement therapeutics.
Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Nefropatias , Criança , Complemento C3 , Fator Nefrítico do Complemento 3 , Via Alternativa do Complemento , Feminino , Seguimentos , Glomerulonefrite Membranoproliferativa/patologia , Humanos , Masculino , ProperdinaRESUMO
Cystinosis is an inherited metabolic disorder caused by autosomal recessive mutations in the CTNS gene leading to lysosomal cystine accumulation. The disease primarily affects the kidneys followed by extra-renal organ involvement later in life. Azoospermia is one of the unclarified complications which are not improved by cysteamine, which is the only available disease-modifying treatment. We aimed at unraveling the origin of azoospermia in cysteamine-treated cystinosis by confirming or excluding an obstructive factor, and investigating the effect of cysteamine on fertility in the Ctns-/- mouse model compared with wild type. Azoospermia was present in the vast majority of infantile type cystinosis patients. While spermatogenesis was intact, an enlarged caput epididymis and reduced levels of seminal markers for obstruction neutral α-glucosidase (NAG) and extracellular matrix protein 1 (ECM1) pointed towards an epididymal obstruction. Histopathological examination in human and mouse testis revealed a disturbed blood-testis barrier characterized by an altered zonula occludens-1 (ZO-1) protein expression. Animal studies ruled out a negative effect of cysteamine on fertility, but showed that cystine accumulation in the testis is irresponsive to regular cysteamine treatment. We conclude that the azoospermia in infantile cystinosis is due to an obstruction related to epididymal dysfunction, irrespective of the severity of an evolving primary hypogonadism. Regular cysteamine treatment does not affect fertility but has subtherapeutic effects on cystine accumulation in testis.