Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553272

RESUMO

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático do Citocromo P-450/genética , Ecótipo , Epistasia Genética , Frutas/genética , Duplicação Gênica , Genoma de Planta , Genótipo , Endogamia , Anotação de Sequência Molecular , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
2.
Cell ; 172(1-2): 249-261.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328914

RESUMO

Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how breeding globally altered fruit metabolite content. Selection for alleles of genes associated with larger fruits altered metabolite profiles as a consequence of linkage with nearby genes. Selection of five major loci reduced the accumulation of anti-nutritional steroidal glycoalkaloids in ripened fruits, rendering the fruit more edible. Breeding for pink tomatoes modified the content of over 100 metabolites. The introgression of resistance genes from wild relatives in cultivars also resulted in major and unexpected metabolic changes. The study reveals a multi-omics view of the metabolic breeding history of tomato, as well as provides insights into metabolome-assisted breeding and plant biology.


Assuntos
Frutas/genética , Metaboloma , Metabolômica/métodos , Melhoramento Vegetal/métodos , Solanum lycopersicum/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Seleção Artificial
3.
Cell ; 169(6): 1142-1155.e12, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28528644

RESUMO

Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. We found branched variants carry mutations in two related transcription factors that were selected independently. One founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this suppression restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher-yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms. VIDEO ABSTRACT.


Assuntos
Epistasia Genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Domesticação , Inflorescência/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
4.
PLoS Genet ; 19(5): e1010751, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141297

RESUMO

Methyl salicylate is an important inter- and intra-plant signaling molecule, but is deemed undesirable by humans when it accumulates to high levels in ripe fruits. Balancing the tradeoff between consumer satisfaction and overall plant health is challenging as the mechanisms regulating volatile levels have not yet been fully elucidated. In this study, we investigated the accumulation of methyl salicylate in ripe fruits of tomatoes that belong to the red-fruited clade. We determine the genetic diversity and the interaction of four known loci controlling methyl salicylate levels in ripe fruits. In addition to Non-Smoky Glucosyl Transferase 1 (NSGT1), we uncovered extensive genome structural variation (SV) at the Methylesterase (MES) locus. This locus contains four tandemly duplicated Methylesterase genes and genome sequence investigations at the locus identified nine distinct haplotypes. Based on gene expression and results from biparental crosses, functional and non-functional haplotypes for MES were identified. The combination of the non-functional MES haplotype 2 and the non-functional NSGT1 haplotype IV or V in a GWAS panel showed high methyl salicylate levels in ripe fruits, particularly in accessions from Ecuador, demonstrating a strong interaction between these two loci and suggesting an ecological advantage. The genetic variation at the other two known loci, Salicylic Acid Methyl Transferase 1 (SAMT1) and tomato UDP Glycosyl Transferase 5 (SlUGT5), did not explain volatile variation in the red-fruited tomato germplasm, suggesting a minor role in methyl salicylate production in red-fruited tomato. Lastly, we found that most heirloom and modern tomato accessions carried a functional MES and a non-functional NSGT1 haplotype, ensuring acceptable levels of methyl salicylate in fruits. Yet, future selection of the functional NSGT1 allele could potentially improve flavor in the modern germplasm.


Assuntos
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Salicilatos/análise , Salicilatos/química , Salicilatos/metabolismo , Glicosiltransferases , Equador , Frutas/genética
5.
Plant Physiol ; 191(1): 110-124, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315067

RESUMO

Methyl salicylate imparts a potent flavor and aroma described as medicinal and wintergreen that is undesirable in tomato (Solanum lycopersicum) fruit. Plants control the quantities of methyl salicylate through a variety of biosynthetic pathways, including the methylation of salicylic acid to form methyl salicylate and subsequent glycosylation to prevent methyl salicylate emission. Here, we identified a subclade of tomato methyl esterases, SALICYLIC ACID METHYL ESTERASE1-4, responsible for demethylation of methyl salicylate to form salicylic acid in fruits. This family was identified by proximity to a highly significant methyl salicylate genome-wide association study locus on chromosome 2. Genetic mapping studies in a biparental population confirmed a major methyl salicylate locus on chromosome 2. Fruits from SlMES1 knockout lines emitted significantly (P < 0,05, t test) higher amounts of methyl salicylate than wild-type fruits. Double and triple mutants of SlMES2, SlMES3, and SlMES4 emitted even more methyl salicylate than SlMES1 single knockouts-but not at statistically distinguishable levels-compared to the single mutant. Heterologously expressed SlMES1 and SlMES3 acted on methyl salicylate in vitro, with SlMES1 having a higher affinity for methyl salicylate than SlMES3. The SlMES locus has undergone major rearrangement, as demonstrated by genome structure analysis in the parents of the biparental population. Analysis of accessions that produce high or low levels of methyl salicylate showed that SlMES1 and SlMES3 genes expressed the highest in the low methyl salicylate lines. None of the MES genes were appreciably expressed in the high methyl salicylate-producing lines. We concluded that the SlMES gene family encodes tomato methyl esterases that convert methyl salicylate to salicylic acid in ripe tomato fruit. Their ability to decrease methyl salicylate levels by conversion to salicylic acid is an attractive breeding target to lower the level of a negative contributor to flavor.


Assuntos
Ácido Salicílico , Solanum lycopersicum , Ácido Salicílico/metabolismo , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 192(2): 1517-1531, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36852887

RESUMO

Meristem maintenance, achieved through the highly conserved CLAVATA-WUSCHEL (CLV-WUS) regulatory circuit, is fundamental in balancing stem cell proliferation with cellular differentiation. Disruptions to meristem homeostasis can alter meristem size, leading to enlarged organs. Cotton (Gossypium spp.), the world's most important fiber crop, shows inherent variation in fruit size, presenting opportunities to explore the networks regulating meristem homeostasis and to impact fruit size and crop value. We identified and characterized the cotton orthologs of genes functioning in the CLV-WUS circuit. Using virus-based gene manipulation in cotton, we altered the expression of each gene to perturb meristem regulation and increase fruit size. Targeted alteration of individual components of the CLV-WUS circuit modestly fasciated flowers and fruits. Unexpectedly, controlled expression of meristem regulator SELF-PRUNING (SP) increased the impacts of altered CLV-WUS expression on flower and fruit fasciation. Meristem transcriptomics showed SP and genes of the CLV-WUS circuit are expressed independently from each other, suggesting these gene products are not acting in the same path. Virus-induced silencing of GhSP facilitated the delivery of other signals to the meristem to alter organ specification. SP has a role in cotton meristem homeostasis, and changes in GhSP expression increased access of virus-derived signals to the meristem.


Assuntos
Proteínas de Arabidopsis , Meristema , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética
7.
Plant J ; 110(6): 1536-1550, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35514123

RESUMO

Tomato has undergone extensive selections during domestication. Recent progress has shown that genomic structural variants (SVs) have contributed to gene expression dynamics during tomato domestication, resulting in changes of important traits. Here, we performed comprehensive analyses of small RNAs (sRNAs) from nine representative tomato accessions. We demonstrate that SVs substantially contribute to the dynamic expression of the three major classes of plant sRNAs: microRNAs (miRNAs), phased secondary short interfering RNAs (phasiRNAs), and 24-nucleotide heterochromatic siRNAs (hc-siRNAs). Changes in the abundance of phasiRNAs and 24-nucleotide hc-siRNAs likely contribute to the alteration of mRNA gene expression in cis during tomato domestication, particularly for genes associated with biotic and abiotic stress tolerance. We also observe that miRNA expression dynamics are associated with imprecise processing, alternative miRNA-miRNA* selections, and SVs. SVs mainly affect the expression of less-conserved miRNAs that do not have established regulatory functions or low abundant members in highly expressed miRNA families. Our data highlight different selection pressures on miRNAs compared to phasiRNAs and 24-nucleotide hc-siRNAs. Our findings provide insights into plant sRNA evolution as well as SV-based gene regulation during crop domestication. Furthermore, our dataset provides a rich resource for mining the sRNA regulatory network in tomato.


Assuntos
MicroRNAs , Solanum lycopersicum , Domesticação , Regulação da Expressão Gênica de Plantas/genética , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Transcriptoma/genética
8.
New Phytol ; 238(6): 2393-2409, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866711

RESUMO

The mechanisms that regulate the vast diversity of plant organ shapes such as the fruit remain to be fully elucidated. TONNEAU1 Recruiting Motif proteins (TRMs) have been implicated in the control of organ shapes in a number of plant species, including tomato. However, the role of many of them is unknown. TRMs interact with Ovate Family Proteins (OFPs) via the M8 domain. However, the in planta function of the TRM-OFP interaction in regulating shape is unknown. We used CRISPR/Cas9 to generate knockout mutants in TRM proteins from different subclades and in-frame mutants within the M8 domain to investigate their roles in organ shape and interactions with OFPs. Our findings indicate that TRMs impact organ shape along both the mediolateral and proximo-distal axes of growth. Mutations in Sltrm3/4 and Sltrm5 act additively to rescue the elongated fruit phenotype of ovate/Slofp20 (o/s) to a round shape. Contrary, mutations in Sltrm19 and Sltrm17/20a result in fruit elongation and further enhance the obovoid phenotype in the o/s mutant. This study supports a combinatorial role of the TRM-OFP regulon where OFPs and TRMs expressed throughout development have both redundant and opposing roles in regulating organ shape.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas , Mutação/genética , Fenótipo
9.
Plant Cell Physiol ; 63(11): 1573-1583, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35715986

RESUMO

Human selection on wild populations mostly favored a common set of plant traits during domestication. This process of direct selection also altered other independent traits that were not directly perceived or desired during crop domestication and improvement. A deeper knowledge of the inadvertent and undesirable phenotypic effects and their underlying genetic causes can help design strategies to mitigate their effects and improve genetic gain in crop plants. We review different factors explaining the negative consequences of plant domestication at the phenotypic and genomic levels. We further describe the genetic causes of undesirable effects that originate from the selection of favorable alleles during plant domestication. In addition, we propose strategies that could be useful in attenuating such effects for crop improvement. With novel -omics and genome-editing tools, it is relatively approachable to understand and manipulate the genetic and biochemical mechanisms responsible for the undesirable phenotypes in domesticated plants.


Assuntos
Produtos Agrícolas , Domesticação , Humanos , Produtos Agrícolas/genética , Edição de Genes , Fenótipo , Alelos
10.
Am J Bot ; 109(7): 1157-1176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694731

RESUMO

PREMISE: Capsicum annuum (Solanaceae) was originally domesticated in Mexico, where wild (C. annuum var. glabriusculum) and cultivated (C. annuum var. annuum) chile pepper populations (>60 landraces) are common, and wild-resembling individuals (hereafter semiwild) grow spontaneously in anthropogenic environments. Here we analyze the role of elevation and domestication gradients in shaping the genetic diversity in C. annuum from the state of Oaxaca, Mexico. METHODS: We collected samples of 341 individuals from 28 populations, corresponding to wild, semiwild (C. annuum var. glabriusculum) and cultivated C. annuum, and closely related species Capsicum frutescens and C. chinense. From the genetic variation of 10 simple sequence repeat (SSR) loci, we assessed the population genetic structure, inbreeding, and gene flow through variance distribution analyses, genetic clustering, and connectivity estimations. RESULTS: Genetic diversity (HE ) did not differ across domestication levels. However, inbreeding coefficients were higher in semiwild and cultivated chiles than in wild populations. We found evidence for gene flow between wild populations and cultivated landraces along the coast. Genetic structure analysis revealed strong differentiation between most highland and lowland landraces. CONCLUSIONS: Gene flow between wild and domesticated populations may be mediated by backyards and smallholder farms, while mating systems may facilitate gene flow between landraces and semiwild populations. Domestication and elevation may overlap in their influence on genetic differentiation. Lowland Gui'ña dani clustered with highland landraces perhaps due to the social history of the Zapotec peoples. In situ conservation may play an important role in preserving semiwild populations and private alleles found in landraces.


Assuntos
Capsicum , Capsicum/genética , Fluxo Gênico , Variação Genética , México , Repetições de Microssatélites/genética
11.
Mol Biol Evol ; 37(4): 1118-1132, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912142

RESUMO

The process of plant domestication is often protracted, involving underexplored intermediate stages with important implications for the evolutionary trajectories of domestication traits. Previously, tomato domestication history has been thought to involve two major transitions: one from wild Solanum pimpinellifolium L. to a semidomesticated intermediate, S. lycopersicum L. var. cerasiforme (SLC) in South America, and a second transition from SLC to fully domesticated S. lycopersicum L. var. lycopersicum in Mesoamerica. In this study, we employ population genomic methods to reconstruct tomato domestication history, focusing on the evolutionary changes occurring in the intermediate stages. Our results suggest that the origin of SLC may predate domestication, and that many traits considered typical of cultivated tomatoes arose in South American SLC, but were lost or diminished once these partially domesticated forms spread northward. These traits were then likely reselected in a convergent fashion in the common cultivated tomato, prior to its expansion around the world. Based on these findings, we reveal complexities in the intermediate stage of tomato domestication and provide insight on trajectories of genes and phenotypes involved in tomato domestication syndrome. Our results also allow us to identify underexplored germplasm that harbors useful alleles for crop improvement.


Assuntos
Produtos Agrícolas/genética , Domesticação , Solanum lycopersicum/genética , Evolução Biológica , Fluxo Gênico , Genômica , América Latina , Filogeografia , Seleção Genética
12.
J Exp Bot ; 72(4): 1225-1244, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33159787

RESUMO

The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato and other crops.


Assuntos
Frutas , Metabolismo dos Lipídeos , Fotossíntese , Sementes , Solanum lycopersicum , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
13.
Theor Appl Genet ; 134(9): 2931-2945, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34128088

RESUMO

KEY MESSAGE: Blossom-End Rot is Quantitatively Inherited and Maps to Four Loci in Tomato. Blossom-end rot (BER) is a devastating physiological disorder that affects tomato and other vegetables, resulting in significant crop losses. To date, most studies on BER have focused on the environmental factors that affect calcium translocation to the fruit; however, the genetic basis of this disorder remains unknown. To investigate the genetic basis of BER, two F2 and F3:4 populations along with a BC1 population that segregated for BER occurrence were evaluated in the greenhouse. Using the QTL-seq approach, quantitative trait loci (QTL) associated with BER Incidence were identified at the bottom of chromosome (ch) 3 and ch11. Additionally, linkage-based QTL mapping detected another QTL, BER3.1, on ch3 and BER4.1 on ch4. To fine map the QTLs identified by QTL-seq, recombinant screening was performed. BER3.2, the major BER QTL on ch3, was narrowed down from 5.68 to 1.58 Mbp with a 1.5-LOD support interval (SI) corresponding to 209 candidate genes. BER3.2 colocalizes with the fruit weight gene FW3.2/SlKLUH, an ortholog of cytochrome P450 KLUH in Arabidopsis. Further, BER11.1, the major BER QTL on ch11, was narrowed down from 3.99 to 1.13 Mbp with a 1.5-LOD SI interval comprising of 141 candidate genes. Taken together, our results identified and fine mapped the first loci for BER resistance in tomato that will facilitate marker-assistant breeding not only in tomato but also in many other vegetables suffering for BER.


Assuntos
Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Solanum lycopersicum/genética , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Ligação Genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
14.
Theor Appl Genet ; 134(10): 3363-3378, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283260

RESUMO

KEY MESSAGE: Six novel fruit weight QTLs were identified in tomato using multiple bi-parental populations developed from ancestral accessions. Beneficial alleles at these loci arose in semi-domesticated subpopulations and were likely left behind. This study paves the way to introgress these alleles into breeding programs. The size and weight of edible organs have been strongly selected during crop domestication. Concurrently, human have also focused on nutritional and cultural characteristics of fruits and vegetables, at times countering selective pressures on beneficial size and weight alleles. Therefore, it is likely that novel improvement alleles for organ weight still segregate in ancestral germplasm. To date, five domestication and diversification genes affecting tomato fruit weight have been identified, yet the genetic basis for increases in weight has not been fully accounted for. We found that fruit weight increased gradually during domestication and diversification, and semi-domesticated subpopulations featured high phenotypic and nucleotide diversity. Columella and septum fruit tissues were proportionally increased, suggesting targeted selection. We developed twenty-one F2 populations with parents fixed for the known fruit weight genes, corresponding to putative key transitions from wild to fully domesticated tomatoes. These parents also showed differences in fruit weight attributes as well as the developmental timing of size increase. A subset of populations was targeted for QTL-seq, leading to the identification of six uncloned fruit weight QTLs. Three QTLs, located on chromosomes 1, 2 and 3, were subsequently validated by progeny testing. By exploring the segregation of the known fruit weight genes and the identified QTLs, we estimated that most beneficial alleles in the newly identified loci arose in semi-domesticated subpopulations from South America and were not likely transmitted to fully domesticated landraces. Therefore, these alleles could be incorporated into breeding programs using the germplasm and genetic resources identified in this study.


Assuntos
Cromossomos de Plantas/genética , Domesticação , Frutas/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Mapeamento Cromossômico/métodos , Frutas/fisiologia , Ligação Genética , Genoma de Planta , Solanum lycopersicum/fisiologia , Fenótipo , Proteínas de Plantas/genética , Locos de Características Quantitativas
15.
Semin Cell Dev Biol ; 79: 27-36, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092788

RESUMO

Angiosperms produce seeds as their progeny enclosed in maternally-derived structures called fruits. Evolutionarily, fruits have contributed enormously to the success of the Angiosperms phylum by providing protection and nutrition to the developing seeds, while ensuring the efficient dispersal upon maturity. Fruits vary massively in both size and shape and certain species have been targeted for domestication due to their nutritional value and delicious taste. Among the vast array of 3D fruit shapes that exist in nature, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. In this review, we discuss the latest results in identifying components that control fruit morphology and their effect on isotropic and anisotropic growth. Moreover, we will compare the current knowledge on the mechanisms that control fruit growth, size and shape between the domesticated Solanaceae species, tomato and members of the large family of Brassicaceae.


Assuntos
Frutas/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Sementes/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Variação Genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
16.
J Exp Bot ; 71(19): 5911-5923, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32744621

RESUMO

Patterns of indeterminate and determinate growth specify plant architecture and influence crop productivity. In cotton (Gossypium hirsutum), SINGLE FLOWER TRUSS (SFT) stimulates the transition to flowering and determinate growth, while its closely related antagonist SELF-PRUNING (SP) maintains meristems in indeterminate states to favor vegetative growth. Overexpressing GhSFT while simultaneously silencing GhSP produces highly determinate cotton with reduced foliage and synchronous fruiting. These findings suggest that GhSFT, GhSP, and genes in these signaling networks hold promise for enhancing 'annualized' growth patterns and improving cotton productivity and management. To identify the molecular programs underlying cotton growth habits, we used comparative co-expression networks, differential gene expression, and phenotypic analyses in cotton varieties expressing altered levels of GhSFT or GhSP. Using multiple cotton and tomato datasets, we identified diverse genetic modules highly correlated with SFT or SP orthologs which shared related Gene Ontologies in different crop species. Notably, altering GhSFT or GhSP levels in cotton affected the expression of genes regulating meristem fate and metabolic pathways. Further phenotypic analyses of gene products involved in photosynthesis, secondary metabolism, and cell wall biosynthesis showed that early changes in GhSFT and GhSP levels profoundly impacted later development in distal tissues. Identifying the molecular underpinnings of GhSFT and GhSP activities emphasizes their broad actions in regulating cotton architecture.


Assuntos
Flores , Gossypium , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Meristema , Redes e Vias Metabólicas
17.
PLoS Genet ; 13(8): e1006930, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28817560

RESUMO

Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from increased mesocarp cell size and not from increased number of cell layers. The effect of CSR on fruit weight and cell size is found across different genetic backgrounds implying a consistent impact of the locus on the trait. In fruits, CSR expression is undetectable early in development from floral meristems to the rapid cell proliferation stage after anthesis. Expression is low but detectable in growing fruit tissues and in or around vascular bundles coinciding with the cell enlargement stage of the fruit maturation process. CSR encodes an uncharacterized protein whose clade has expanded in the Solanaceae family. The mutant allele is predicted to encode a shorter protein due to a 1.4 kb deletion resulting in a 194 amino-acid truncation. Co-expression analyses and GO term enrichment analyses suggest association of CSR with cell differentiation in fruit tissues and vascular bundles. The derived allele arose in Solanum lycopersicum var cerasiforme and appears completely fixed in many cultivated tomato's market classes. This finding suggests that the selection of this allele was critical to the full domestication of tomato from its intermediate ancestors.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Solanum lycopersicum/genética , Alelos , Diferenciação Celular , Clonagem Molecular , Fenótipo , Filogenia , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de RNA
18.
Plant Cell Physiol ; 60(5): 1067-1081, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753610

RESUMO

Elongated tomato fruit shape is the result of the action of the fruit shape genes possibly in coordination with the phytohormone auxin. To investigate the possible link between auxin and the fruit shape genes, a series of auxin (2,4-D) treatments were performed on the wild-type and the fruit shape near-isogenic lines (NILs) in Solanum pimpinellifolium accession LA1589 background. Morphological and histological analyses indicated that auxin application approximately 3 weeks before anthesis led to elongated pear-shaped ovaries and fruits, which was mainly attributed to the increase of ovary/fruit proximal end caused by the increase of both cell number and cell size. Fruit shape changes caused by SUN, OVATE and fs8.1 were primarily due to the alterations of cell number along different growth axes. Particularly, SUN caused elongation by extending cell number along the entire proximal-distal axis, whereas OVATE caused fruit elongation in the proximal area, which was most similar to the effect of auxin on ovary shape. Expression analysis of flower buds at different stages in fruit shape NILs indicated that SUN had a stronger impact on the transcriptome than OVATE and fs8.1. The sun NIL differentially expressed genes were enriched in several biological processes, such as lipid metabolism, ion transmembrane and actin cytoskeleton organization. Additionally, SUN also shifted the expression of the auxin-related genes, including those involved in auxin biosynthesis, homeostasis, signal transduction and polar transport, indicating that SUN may regulate ovary/fruit shape through modifying the expression of auxin-related genes very early during the formation of the ovary in the developing flower.


Assuntos
Frutas/metabolismo , Solanum lycopersicum/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Flores/efeitos da radiação , Frutas/efeitos dos fármacos , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/efeitos da radiação , Proteínas de Plantas/metabolismo
19.
Plant Physiol ; 168(4): 1684-701, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099271

RESUMO

Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs.


Assuntos
Flores/genética , Frutas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Redes Reguladoras de Genes , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização In Situ , Microdissecção e Captura a Laser , Solanum lycopersicum/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Plant Physiol ; 168(3): 1164-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941316

RESUMO

SUN controls elongated tomato (Solanum lycopersicum) shape early in fruit development through changes in cell number along the different axes of growth. The gene encodes a member of the IQ domain family characterized by a calmodulin binding motif. To gain insights into the role of SUN in regulating organ shape, we characterized genome-wide transcriptional changes and metabolite and hormone accumulation after pollination and fertilization in wild-type and SUN fruit tissues. Pericarp, seed/placenta, and columella tissues were collected at 4, 7, and 10 d post anthesis. Pairwise comparisons between SUN and the wild type identified 3,154 significant differentially expressed genes that cluster in distinct gene regulatory networks. Gene regulatory networks that were enriched for cell division, calcium/transport, lipid/hormone, cell wall, secondary metabolism, and patterning processes contributed to profound shifts in gene expression in the different fruit tissues as a consequence of high expression of SUN. Promoter motif searches identified putative cis-elements recognized by known transcription factors and motifs related to mitotic-specific activator sequences. Hormone levels did not change dramatically, but some metabolite levels were significantly altered, namely participants in glycolysis and the tricarboxylic acid cycle. Also, hormone and primary metabolite networks shifted in SUN compared with wild-type fruit. Our findings imply that SUN indirectly leads to changes in gene expression, most strongly those involved in cell division, cell wall, and patterning-related processes. When evaluating global coregulation in SUN fruit, the main node represented genes involved in calcium-regulated processes, suggesting that SUN and its calmodulin binding domain impact fruit shape through calcium signaling.


Assuntos
Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Aminoácidos/metabolismo , Sequência de Bases , Frutas/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Polinização/genética , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA