Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Breast Cancer Res ; 25(1): 51, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147730

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive. METHODS: Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors. RESULTS: We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation. CONCLUSION: Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Ciclina-Dependentes/genética , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias
2.
Breast Cancer Res Treat ; 198(3): 583-596, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826702

RESUMO

Hypoxia is linked to disease progression and poor prognosis in several cancers, including breast cancer. Cancer cells can encounter acute, chronic, and/or intermittent periods of oxygen deprivation and it is poorly understood how the different breast cancer subtypes respond to such hypoxia regimes. Here, we assessed the response of representative cell lines for the luminal and basal A subtype to acute (24 h) and chronic hypoxia (5 days). High throughput targeted transcriptomics analysis showed that HIF-related pathways are significantly activated in both subtypes. Indeed, HIF1⍺ nuclear accumulation and activation of the HIF1⍺ target gene CA9 were comparable. Based on the number of differentially expressed genes: (i) 5 days of exposure to hypoxia induced a more profound transcriptional reprogramming than 24 h, and (ii) basal A cells were less affected by acute and chronic hypoxia as compared to luminal cells. Hypoxia-regulated gene networks were identified of which hub genes were associated with worse survival in breast cancer patients. Notably, while chronic hypoxia altered the regulation of the cell cycle in both cell lines, it induced two distinct adaptation programs in these subtypes. Mainly genes controlling central carbon metabolism were affected in the luminal cells whereas genes controlling the cytoskeleton were affected in the basal A cells. In agreement, in response to chronic hypoxia, lactate secretion was more prominently increased in the luminal cell lines which were associated with the upregulation of the GAPDH glycolytic enzyme. This was not observed in the basal A cell lines. In contrast, basal A cells displayed enhanced cell migration associated with more F-actin stress fibers whereas luminal cells did not. Altogether, these data show distinct responses to acute and chronic hypoxia that differ considerably between luminal and basal A cells. This differential adaptation is expected to play a role in the progression of these different breast cancer subtypes.


Assuntos
Neoplasias da Mama , Neoplasia de Células Basais , Humanos , Feminino , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Neoplasia de Células Basais/genética , Hipóxia/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Cell Biol Toxicol ; 39(2): 415-433, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505273

RESUMO

Cells can adjust their mitochondrial morphology by altering the balance between mitochondrial fission and fusion to adapt to stressful conditions. The connection between a chemical perturbation, changes in mitochondrial function, and altered mitochondrial morphology is not well understood. Here, we made use of high-throughput high-content confocal microscopy to assess the effects of distinct classes of oxidative phosphorylation (OXPHOS) complex inhibitors on mitochondrial parameters in a concentration and time resolved manner. Mitochondrial morphology phenotypes were clustered based on machine learning algorithms and mitochondrial integrity patterns were mapped. In parallel, changes in mitochondrial membrane potential (MMP), mitochondrial and cellular ATP levels, and viability were microscopically assessed. We found that inhibition of MMP, mitochondrial ATP production, and oxygen consumption rate (OCR) using sublethal concentrations of complex I and III inhibitors did not trigger mitochondrial fragmentation. Instead, complex V inhibitors that suppressed ATP and OCR but increased MMP provoked a more fragmented mitochondrial morphology. In agreement, complex V but not complex I or III inhibitors triggered proteolytic cleavage of the mitochondrial fusion protein, OPA1. The relation between increased MMP and fragmentation did not extend beyond OXPHOS complex inhibitors: increasing MMP by blocking the mPTP pore did not lead to OPA1 cleavage or mitochondrial fragmentation and the OXPHOS uncoupler FCCP was associated with OPA1 cleavage and MMP reduction. Altogether, our findings connect vital mitochondrial functions and phenotypes in a high-throughput high-content confocal microscopy approach that help understanding of chemical-induced toxicity caused by OXPHOS complex perturbing chemicals.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/farmacologia
4.
Cell Biol Toxicol ; 39(6): 3031-3059, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37353587

RESUMO

Analysis of the transcriptomic alterations upon chemical challenge, provides in depth mechanistic information on the compound's toxic mode of action, by revealing specific pathway activation and other transcriptional modulations. Mapping changes in cellular behaviour to chemical insult, facilitates the characterisation of chemical hazard. In this study, we assessed the transcriptional landscape of mitochondrial impairment through the inhibition of the electron transport chain (ETC) in a human renal proximal tubular cell line (RPTEC/TERT1). We identified the unfolded protein response pathway (UPR), particularly the PERK/ATF4 branch as a common cellular response across ETC I, II and III inhibitions. This finding and the specific genes elaborated may aid the identification of mitochondrial liabilities of chemicals in both legacy data and prospective transcriptomic studies.


Assuntos
Células Epiteliais , Rim , Humanos , Transporte de Elétrons/genética , Estudos Prospectivos , Rim/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo
5.
Arch Toxicol ; 96(1): 259-285, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642769

RESUMO

Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicating its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evidence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, (ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an AAR accompany ETC inhibition in HepG2 and primary hepatocytes.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Transporte de Elétrons , Células Hep G2 , Hepatócitos , Humanos
6.
Arch Toxicol ; 95(2): 591-615, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33512557

RESUMO

Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation. Five cI, three complex II (cII), and five complex III (cIII) inhibitors were characterized in detail in human dopaminergic neuronal cell cultures. The NeuriTox assay, examining neurite damage in LUHMES cells, was used as in vitro proxy of the adverse outcome (AO), i.e., of dopaminergic neurodegeneration. This test provided data on whether test compounds were unspecific cytotoxicants or specifically neurotoxic, and it yielded potency data with respect to neurite degeneration. The pesticide panel was also examined in assays for the sequential key events (KE) leading to the AO, i.e., mitochondrial respiratory chain inhibition, mitochondrial dysfunction, and disturbed proteostasis. Data from KE assays were compared to the NeuriTox data (AO). The cII-inhibitory pesticides tested here did not appear to trigger the AOP:3 at all. Some of the cI/cIII inhibitors showed a consistent AOP activation response in all assays, while others did not. In general, there was a clear hierarchy of assay sensitivity: changes of gene expression (biomarker of neuronal stress) correlated well with NeuriTox data; mitochondrial failure (measured both by a mitochondrial membrane potential-sensitive dye and a respirometric assay) was about 10-260 times more sensitive than neurite damage (AO); cI/cIII activity was sometimes affected at > 1000 times lower concentrations than the neurites. These data suggest that the use of AOP:3 for hazard assessment has a number of caveats: (i) specific parkinsonian neurodegeneration cannot be easily predicted from assays of mitochondrial dysfunction; (ii) deriving a point-of-departure for risk assessment from early KE assays may overestimate toxicant potency.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Transporte de Elétrons/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Praguicidas/toxicidade , Biomarcadores , Linhagem Celular , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Humanos , Proteostase/efeitos dos fármacos , Medição de Risco , Transcriptoma
8.
Arch Toxicol ; 94(8): 2707-2729, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32607615

RESUMO

Evidence is mounting for the central role of mitochondrial dysfunction in several pathologies including metabolic diseases, accelerated ageing, neurodegenerative diseases and in certain xenobiotic-induced organ toxicity. Assessing mitochondrial perturbations is not trivial and the outcomes of such investigations are dependent on the cell types used and assays employed. Here we systematically investigated the effect of electron transport chain (ETC) inhibitors on multiple mitochondrial-related parameters in two human cell types, HepG2 and RPTEC/TERT1. Cells were exposed to a broad range of concentrations of 20 ETC-inhibiting agrochemicals and capsaicin, consisting of inhibitors of NADH dehydrogenase (Complex I, CI), succinate dehydrogenase (Complex II, CII) and cytochrome bc1 complex (Complex III, CIII). A battery of tests was utilised, including viability assays, lactate production, mitochondrial membrane potential (MMP) and the Seahorse bioanalyser, which simultaneously measures extracellular acidification rate [ECAR] and oxygen consumption rate [OCR]. CI inhibitors caused a potent decrease in OCR, decreased mitochondrial membrane potential, increased ECAR and increased lactate production in both cell types. Twenty-fourhour exposure to CI inhibitors decreased viability of RPTEC/TERT1 cells and 3D spheroid-cultured HepG2 cells in the presence of glucose. CI inhibitors decreased 2D HepG2 viability only in the absence of glucose. CII inhibitors had no notable effects in intact cells up to 10 µM. CIII inhibitors had similar effects to the CI inhibitors. Antimycin A was the most potent CIII inhibitor, with activity in the nanomolar range. The proposed CIII inhibitor cyazofamid demonstrated a mitochondrial uncoupling signal in both cell types. The study presents a comprehensive example of a mitochondrial assessment workflow and establishes measurable key events of ETC inhibition.


Assuntos
Agroquímicos/toxicidade , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Desacopladores/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Consumo de Oxigênio/efeitos dos fármacos
9.
Arch Toxicol ; 93(6): 1585-1608, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31190196

RESUMO

Many neurotoxicants affect energy metabolism in man, but currently available test methods may still fail to predict mito- and neurotoxicity. We addressed this issue using LUHMES cells, i.e., human neuronal precursors that easily differentiate into mature neurons. Within the NeuriTox assay, they have been used to screen for neurotoxicants. Our new approach is based on culturing the cells in either glucose or galactose (Glc-Gal-NeuriTox) as the main carbohydrate source during toxicity testing. Using this Glc-Gal-NeuriTox assay, 52 mitochondrial and non-mitochondrial toxicants were tested. The panel of chemicals comprised 11 inhibitors of mitochondrial respiratory chain complex I (cI), 4 inhibitors of cII, 8 of cIII, and 2 of cIV; 8 toxicants were included as they are assumed to be mitochondrial uncouplers. In galactose, cells became more dependent on mitochondrial function, which made them 2-3 orders of magnitude more sensitive to various mitotoxicants. Moreover, galactose enhanced the specific neurotoxicity (destruction of neurites) compared to a general cytotoxicity (plasma membrane lysis) of the toxicants. The Glc-Gal-NeuriTox assay worked particularly well for inhibitors of cI and cIII, while the toxicity of uncouplers and non-mitochondrial toxicants did not differ significantly upon glucose ↔ galactose exchange. As a secondary assay, we developed a method to quantify the inhibition of all mitochondrial respiratory chain functions/complexes in LUHMES cells. The combination of the Glc-Gal-NeuriTox neurotoxicity screening assay with the mechanistic follow up of target site identification allowed both, a more sensitive detection of neurotoxicants and a sharper definition of the mode of action of mitochondrial toxicants.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Células-Tronco Neurais/efeitos dos fármacos , Síndromes Neurotóxicas/diagnóstico , Testes de Toxicidade/métodos , Metabolismo dos Carboidratos , Meios de Cultura , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Galactose/metabolismo , Galactose/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Células-Tronco Neurais/ultraestrutura , Neuritos/efeitos dos fármacos , Desacopladores/toxicidade
10.
Toxicol In Vitro ; 81: 105345, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278637

RESUMO

Adverse Outcome Pathways (AOPs) are increasingly used to support the integration of in vitro data in hazard assessment for chemicals. Quantitative AOPs (qAOPs) use mathematical models to describe the relationship between key events (KEs). In this paper, data obtained in three cell lines, LHUMES, HepG2 and RPTEC/TERT1, using similar experimental protocols, was used to calibrate a qAOP of mitochondrial toxicity for two chemicals, rotenone and deguelin. The objectives were to determine whether the same qAOP could be used for the three cell types, and to test chemical-independence by cross-validation with a dataset obtained on eight other chemicals in LHUMES cells. Repeating the calibration approach for both chemicals in three cell lines highlighted various practical difficulties. Even when the same readouts of KEs are measured, the mathematical functions used to describe the key event relationships may not be the same. Cross-validation in LHUMES cells was attempted by estimating chemical-specific potency at the molecular initiating events and using the rest of the calibrated qAOP to predict downstream KEs: toxicity of azoxystrobin, carboxine, mepronil and thifluzamide was underestimated. Selection of most relevant readouts and accurate characterization of the molecular initiating event for cross-validation are critical when designing in vitro experiments targeted at calibrating qAOPs.


Assuntos
Rotas de Resultados Adversos , Linhagem Celular , Modelos Teóricos , Medição de Risco , Testes de Toxicidade
11.
Toxicol In Vitro ; 81: 105348, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35307500

RESUMO

Estrogen receptor alpha (ERα) is often a primary target of endocrine disrupting chemicals (EDCs) and therefore several biochemical and cell-based assays for the detection of chemicals with estrogenic properties have been developed in the past. However, the current approaches are not suitable for the monitoring of pathway activation dynamics, and they are mostly based on expression constructs that lack physiological promoter regulation. We recently developed MCF7 fluorescent reporter cell lines of 3 different green fluorescent protein (GFP)-tagged ERα target genes: GREB1, PGR and TFF1. These reporters are under control of the full physiological promoter region and allow the monitoring of dynamic pro-proliferative pathway activation on a single cell level using a live-cell imaging set-up. In this study, we systematically characterized the response of these reporters to a full reference compound set of known estrogenic and non-estrogenic chemicals as defined by the Organization for Economic Co-Operation and Development (OECD). We linked activation of the pro-proliferative ERα pathway to a potential adverse outcome by additionally monitoring cell cycle progression and proliferation. The correct classification of the OECD reference compounds showed that our reporter platform has the same sensitivity and specificity as other validated artificial ERα pathway reporters, such as the ERα CALUX and VM7 Luc ER TA assay. By monitoring several key events (i.e. ER target activation, cell cycle progression and proliferation), and subsequently determining Point-of-Departure (POD) values, our reporter panel can be used in high-throughput testing for a physiologically more relevant, quantitative temporal endocrine modulation analysis to improve human carcinogen risk assessment.


Assuntos
Disruptores Endócrinos , Receptor alfa de Estrogênio , Bioensaio , Linhagem Celular , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/toxicidade , Humanos , Organização para a Cooperação e Desenvolvimento Econômico
12.
Front Pharmacol ; 12: 679407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489692

RESUMO

Mitochondria are the main bioenergetic organelles of cells. Exposure to chemicals targeting mitochondria therefore generally results in the development of toxicity. The cellular response to perturbations in cellular energy production is a balance between adaptation, by reorganisation and organelle biogenesis, and sacrifice, in the form of cell death. In homeostatic conditions, aerobic mitochondrial energy production requires the maintenance of a mitochondrial membrane potential (MMP). Chemicals can perturb this MMP, and the extent of this perturbation depends both on the pharmacokinetics of the chemicals and on downstream MMP dynamics. Here we obtain a quantitative understanding of mitochondrial adaptation upon exposure to various mitochondrial respiration inhibitors by applying mathematical modeling to partially published high-content imaging time-lapse confocal imaging data, focusing on MMP dynamics in HepG2 cells over a period of 24 h. The MMP was perturbed using a set of 24 compounds, either acting as uncoupler or as mitochondrial complex inhibitor targeting complex I, II, III or V. To characterize the effect of chemical exposure on MMP dynamics, we adapted an existing differential equation model and fitted this model to the observed MMP dynamics. Complex III inhibitor data were better described by the model than complex I data. Incorporation of pharmacokinetic decay into the model was required to obtain a proper fit for the uncoupler FCCP. Furthermore, oligomycin (complex V inhibitor) model fits were improved by either combining pharmacokinetic (PK) decay and ion leakage or a concentration-dependent decay. Subsequent mass spectrometry measurements showed that FCCP had a significant decay in its PK profile as predicted by the model. Moreover, the measured oligomycin PK profile exhibited only a limited decay at high concentration, whereas at low concentrations the compound remained below the detection limit within cells. This is consistent with the hypothesis that oligomycin exhibits a concentration-dependent decay, yet awaits further experimental verification with more sensitive detection methods. Overall, we show that there is a complex interplay between PK and MMP dynamics within mitochondria and that data-driven modeling is a powerful combination to unravel such complexity.

13.
Toxicol Sci ; 181(2): 187-198, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33769548

RESUMO

Estrogen receptor alpha (ERα) belongs to the nuclear hormone receptor family of ligand-inducible transcription factors and regulates gene networks in biological processes such as cell growth and proliferation. Disruption of these networks by chemical compounds with estrogenic activity can result in adverse outcomes such as unscheduled cell proliferation, ultimately culminating in tumor formation. To distinguish disruptive activation from normal physiological responses, it is essential to quantify relationships between different key events leading to a particular adverse outcome. For this purpose, we established fluorescent protein MCF7 reporter cell lines for ERα-induced proliferation by bacterial artificial chromosome-based tagging of 3 ERα target genes: GREB1, PGR, and TFF1. These target genes are inducible by the non-genotoxic carcinogen and ERα agonist 17ß-estradiol in an ERα-dependent manner and are essential for ERα-dependent cell-cycle progression and proliferation. The 3 GFP reporter cell lines were characterized in detail and showed different activation dynamics upon exposure to 17ß-estradiol. In addition, they demonstrated specific activation in response to other established reference estrogenic compounds of different potencies, with similar sensitivities as validated OECD test methods. This study shows that these fluorescent reporter cell lines can be used to monitor the spatial and temporal dynamics of ERα pathway activation at the single-cell level for more mechanistic insight, thereby allowing a detailed assessment of the potential carcinogenic activity of estrogenic compounds in humans.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Carcinógenos , Linhagem Celular Tumoral , Estradiol/toxicidade , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio , Estrogênios/toxicidade , Humanos
14.
ALTEX ; 38(4): 615-635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34114044

RESUMO

Read-across approaches are considered key in moving away from in vivo animal testing towards addressing data-gaps using new approach methods (NAMs). Ample successful examples are still required to substantiate this strategy. Here we present and discuss the learnings from two OECD IATA endorsed read-across case studies. They involve two classes of pesticides ­ rotenoids and strobilurins ­ each having a defined mode-of-action that is assessed for its neurological hazard by means of an AOP-based testing strategy coupled to toxicokinetic simulations of human tissue concentrations. The endpoint in question is potential mitochondrial respiratory chain mediated neurotoxicity, specifically through inhibition of complex I or III. An AOP linking inhibition of mitochondrial respiratory chain complex I to the degeneration of dopaminergic neurons formed the basis for both cases but was deployed in two different regulatory contexts. The two cases also exemplify several different read-across concepts: analogue versus category approach, consolidated versus putative AOP, positive versus negative prediction (i.e., neurotoxicity versus low potential for neurotoxicity), and structural versus biological similarity. We applied a range of NAMs to explore the toxicodynamic properties of the compounds, e.g., in silico docking as well as in vitro assays and readouts ­ including transcriptomics ­ in various cell systems, all anchored to the relevant AOPs. Interestingly, although some of the data addressing certain elements of the read-across were associated with high uncertainty, their impact on the overall read-across conclusion remained limited. Coupled to the elaborate regulatory review that the two cases underwent, we propose some generic learnings of AOP-based testing strategies supporting read-across.


Assuntos
Síndromes Neurotóxicas , Praguicidas , Animais , Simulação por Computador , Humanos , Síndromes Neurotóxicas/etiologia , Medição de Risco , Incerteza
15.
Expert Rev Vaccines ; 15(8): 1029-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26912100

RESUMO

Global polio eradication is closer than ever. Replacement of the live attenuated oral poliovirus vaccine (OPV) by inactivated poliovirus vaccine (IPV) is recommended to achieve complete eradication. Limited global production capacity and relatively high IPV costs compared to OPV spur the need for improved polio vaccines. The target product profile of these vaccines includes not only dose sparing but also high stability, which is important for stockpiling, and easy application important for (emergency) vaccination campaigns. In this review, the current status of alternative polio vaccine delivery strategies is given. Furthermore, we discuss the feasibility of these strategies by highlighting challenges, hurdles to overcome, and formulation issues relevant for optimal vaccine delivery.


Assuntos
Erradicação de Doenças , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacina Antipólio de Vírus Inativado/imunologia , Animais , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA