Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; : e5195, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845018

RESUMO

The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic 1H-[13C] MRS during administration of 13C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct 13C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln 1H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic 1H-[13C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive 13C-birdcage head coil with eight transmit-receive 1H-dipole antennas was used together with a 32-channel 1H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled 13C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-13C]Glu-H4 and [4-13C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-13C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-13C]Glu and [4,5-13C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-13C]Glu and [4,5-13C]Gln could be clearly separated. We have shown that with our setup indirect dynamic 1H-[13C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.

2.
Eur J Radiol ; 177: 111542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861906

RESUMO

INTRODUCTION: Visualization of scoliosis typically requires ionizing radiation (radiography and CT) to visualize bony anatomy. MRI is often additionally performed to screen for neural axis abnormalities. We propose a 14-minutes radiation-free scoliosis-specific MRI protocol, which combines MRI and MRI-based synthetic CT images to visualize soft and osseous structures in one examination. We assess the ability of the protocol to visualize landmarks needed to detect 3D patho-anatomical changes, screen for neural axis abnormalities, and perform surgical planning and navigation. METHODS: 18 adult volunteers were scanned on 1.5 T MR-scanner using 3D T2-weighted and synthetic CT sequences. A predefined checklist of relevant landmarks was used for the parameter assessment by three readers. Parameters included Cobb angles, rotation, torsion, segmental height, area and centroids of Nucleus Pulposus and Intervertebral Disc. Precision, reliability and agreement between the readers measurements were evaluated. RESULTS: 91 % of Likert-based questions scored ≥ 4, indicating moderate to high confidence. Precision of 3D dot positioning was 1.0 mm. Precision of angle measurement was 0.6° (ICC 0.98). Precision of vertebral and IVD height measurements was 0.4 mm (ICC 0.99). Precision of area measurement for NP was 8 mm2 (ICC 0.55) and for IVD 18 mm2 (ICC 0.62) for IVD. Precision of centroid measurement for NP was 1.3 mm (ICC 0.88-0.92) and for IVD 1.1 mm (ICC 0.88-91). CONCLUSIONS: The proposed MRI protocol with synthetic CT reconstructions, has high precision, reliability and agreement between the readers for multiple scoliosis-specific measurements. It can be used to study scoliosis etiopathogenesis and to assess 3D spinal morphology.


Assuntos
Estudos de Viabilidade , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Escoliose , Humanos , Escoliose/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Adulto , Reprodutibilidade dos Testes , Imageamento Tridimensional/métodos , Adolescente , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA